import os from options.test_options import TestOptions from data import create_dataset from models import create_model from util.visualizer import save_images from util import html try: import wandb except ImportError: print('Warning: wandb package cannot be found. The option "--use_wandb" will result in error.') if __name__ == '__main__': opt = TestOptions().parse() # get test options # hard-code some parameters for test opt.num_threads = 0 # test code only supports num_threads = 0 opt.batch_size = 1 # test code only supports batch_size = 1 opt.serial_batches = True # disable data shuffling; comment this line if results on randomly chosen images are needed. opt.no_flip = True # no flip; comment this line if results on flipped images are needed. opt.display_id = -1 # no visdom display; the test code saves the results to a HTML file. dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options model = create_model(opt) # create a model given opt.model and other options model.setup(opt) # regular setup: load and print networks; create schedulers # initialize logger if opt.use_wandb: wandb_run = wandb.init(project=opt.wandb_project_name, name=opt.name, config=opt) if not wandb.run else wandb.run wandb_run._label(repo='CycleGAN-and-pix2pix') # create a website web_dir = os.path.join(opt.results_dir, opt.name, '{}_{}'.format(opt.phase, opt.epoch)) # define the website directory if opt.load_iter > 0: # load_iter is 0 by default web_dir = '{:s}_iter{:d}'.format(web_dir, opt.load_iter) print('creating web directory', web_dir) webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.epoch)) # test with eval mode. This only affects layers like batchnorm and dropout. # For [pix2pix]: we use batchnorm and dropout in the original pix2pix. You can experiment it with and without eval() mode. # For [CycleGAN]: It should not affect CycleGAN as CycleGAN uses instancenorm without dropout. if opt.eval: model.eval() for i, data in enumerate(dataset): if i >= opt.num_test: # only apply our model to opt.num_test images. break model.set_input(data) # unpack data from data loader model.test() # run inference visuals = model.get_current_visuals() # get image results img_path = model.get_image_paths() # get image paths if i % 5 == 0: # save images to an HTML file print('processing (%04d)-th image... %s' % (i, img_path)) save_images(webpage, visuals, img_path, aspect_ratio=opt.aspect_ratio, width=opt.display_winsize, use_wandb=opt.use_wandb) webpage.save() # save the HTML