Spaces:
Runtime error
Runtime error
import cv2 | |
import numpy as np | |
import gradio as gr | |
import paddlehub as hub | |
from methods.img2pixl import pixL | |
from methods.combine import combine | |
from methods.white_box_cartoonizer.cartoonize import WB_Cartoonize | |
model = hub.Module(name='U2Net') | |
pixl = pixL() | |
combine = combine() | |
def func_tab1(image,pixel_size, checkbox1): | |
image = cv2.imread(image.name) | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
image = WB_Cartoonize().infer(image) | |
image = np.array(image) | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
if checkbox1: | |
result = model.Segmentation( | |
images=[image], | |
paths=None, | |
batch_size=1, | |
input_size=320, | |
output_dir='output', | |
visualization=True) | |
result = combine.combiner(images = pixl.toThePixL([result[0]['front'][:,:,::-1], result[0]['mask']], | |
pixel_size), | |
background_image = image) | |
else: | |
result = pixl.toThePixL([image], pixel_size) | |
return result | |
def func_tab2(): | |
pass | |
inputs_tab1 = [gr.inputs.Image(type='file', label="Image"), | |
gr.Slider(4, 100, value=12, step = 2, label="Pixel Size"), | |
gr.Checkbox(label="Object-Oriented Inference", value=False)] | |
outputs_tab1 = [gr.Image(type="numpy",label="Front")] | |
inputs_tab2 = [gr.Video()] | |
outputs_tab2 = [gr.Video()] | |
tab1 = gr.Interface(fn = func_tab1, | |
inputs = inputs_tab1, | |
outputs = outputs_tab1) | |
#Pixera for Videos | |
tab2 = gr.Interface(fn = func_tab2, | |
inputs = inputs_tab2, | |
outputs = outputs_tab2) | |
gr.TabbedInterface([tab1], ["Pixera for Images"]).launch() | |