""" Code copy from uniformer source code: https://github.com/Sense-X/UniFormer """ import os import torch import torch.nn as nn from functools import partial import math from timm.models.vision_transformer import VisionTransformer, _cfg from timm.models.registry import register_model from timm.models.layers import trunc_normal_, DropPath, to_2tuple # ResMLP's normalization class Aff(nn.Module): def __init__(self, dim): super().__init__() # learnable self.alpha = nn.Parameter(torch.ones([1, 1, dim])) self.beta = nn.Parameter(torch.zeros([1, 1, dim])) def forward(self, x): x = x * self.alpha + self.beta return x # Color Normalization class Aff_channel(nn.Module): def __init__(self, dim, channel_first = True): super().__init__() # learnable self.alpha = nn.Parameter(torch.ones([1, 1, dim])) self.beta = nn.Parameter(torch.zeros([1, 1, dim])) self.color = nn.Parameter(torch.eye(dim)) self.channel_first = channel_first def forward(self, x): if self.channel_first: x1 = torch.tensordot(x, self.color, dims=[[-1], [-1]]) x2 = x1 * self.alpha + self.beta else: x1 = x * self.alpha + self.beta x2 = torch.tensordot(x1, self.color, dims=[[-1], [-1]]) return x2 class Mlp(nn.Module): # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class CMlp(nn.Module): # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Conv2d(in_features, hidden_features, 1) self.act = act_layer() self.fc2 = nn.Conv2d(hidden_features, out_features, 1) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class CBlock_ln(nn.Module): def __init__(self, dim, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=Aff_channel, init_values=1e-4): super().__init__() self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim) #self.norm1 = Aff_channel(dim) self.norm1 = norm_layer(dim) self.conv1 = nn.Conv2d(dim, dim, 1) self.conv2 = nn.Conv2d(dim, dim, 1) self.attn = nn.Conv2d(dim, dim, 5, padding=2, groups=dim) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() #self.norm2 = Aff_channel(dim) self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.gamma_1 = nn.Parameter(init_values * torch.ones((1, dim, 1, 1)), requires_grad=True) self.gamma_2 = nn.Parameter(init_values * torch.ones((1, dim, 1, 1)), requires_grad=True) self.mlp = CMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): x = x + self.pos_embed(x) B, C, H, W = x.shape #print(x.shape) norm_x = x.flatten(2).transpose(1, 2) #print(norm_x.shape) norm_x = self.norm1(norm_x) norm_x = norm_x.view(B, H, W, C).permute(0, 3, 1, 2) x = x + self.drop_path(self.gamma_1*self.conv2(self.attn(self.conv1(norm_x)))) norm_x = x.flatten(2).transpose(1, 2) norm_x = self.norm2(norm_x) norm_x = norm_x.view(B, H, W, C).permute(0, 3, 1, 2) x = x + self.drop_path(self.gamma_2*self.mlp(norm_x)) return x def window_partition(x, window_size): """ Args: x: (B, H, W, C) window_size (int): window size Returns: windows: (num_windows*B, window_size, window_size, C) """ B, H, W, C = x.shape #print(x.shape) x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) return windows def window_reverse(windows, window_size, H, W): """ Args: windows: (num_windows*B, window_size, window_size, C) window_size (int): Window size H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) """ B = int(windows.shape[0] / (H * W / window_size / window_size)) x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) return x class WindowAttention(nn.Module): r""" Window based multi-head self attention (W-MSA) module with relative position bias. It supports both of shifted and non-shifted window. Args: dim (int): Number of input channels. window_size (tuple[int]): The height and width of the window. num_heads (int): Number of attention heads. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 proj_drop (float, optional): Dropout ratio of output. Default: 0.0 """ def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.dim = dim self.window_size = window_size # Wh, Ww self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.softmax = nn.Softmax(dim=-1) def forward(self, x): B_, N, C = x.shape qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = (q @ k.transpose(-2, -1)) attn = self.softmax(attn) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B_, N, C) x = self.proj(x) x = self.proj_drop(x) return x ## Layer_norm, Aff_norm, Aff_channel_norm class SwinTransformerBlock(nn.Module): r""" Swin Transformer Block. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resulotion. num_heads (int): Number of attention heads. window_size (int): Window size. shift_size (int): Shift size for SW-MSA. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Module, optional): Activation layer. Default: nn.GELU norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, dim, num_heads=2, window_size=8, shift_size=0, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=Aff_channel): super().__init__() self.dim = dim self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.mlp_ratio = mlp_ratio self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim) #self.norm1 = norm_layer(dim) self.norm1 = norm_layer(dim) self.attn = WindowAttention( dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() #self.norm2 = norm_layer(dim) self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): x = x + self.pos_embed(x) B, C, H, W = x.shape x = x.flatten(2).transpose(1, 2) shortcut = x x = self.norm1(x) x = x.view(B, H, W, C) # cyclic shift if self.shift_size > 0: shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) else: shifted_x = x # partition windows x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C # W-MSA/SW-MSA attn_windows = self.attn(x_windows) # nW*B, window_size*window_size, C # merge windows attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C x = shifted_x x = x.view(B, H * W, C) # FFN x = shortcut + self.drop_path(x) x = x + self.drop_path(self.mlp(self.norm2(x))) x = x.transpose(1, 2).reshape(B, C, H, W) return x if __name__ == "__main__": os.environ['CUDA_VISIBLE_DEVICES']='1' cb_blovk = CBlock_ln(dim = 16) x = torch.Tensor(1, 16, 400, 600) swin = SwinTransformerBlock(dim=16, num_heads=4) x = cb_blovk(x) print(x.shape)