File size: 9,236 Bytes
60e23e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import torch
import torch.nn as nn
import torch.nn.functional as F

from einops import rearrange
from einops.layers.torch import Rearrange
import numbers

# LayerNorm

def to_3d(x):
    return rearrange(x, 'b c h w -> b (h w) c')

def to_4d(x,h,w):
    return rearrange(x, 'b (h w) c -> b c h w',h=h,w=w)

class BiasFree_LayerNorm(nn.Module):
    def __init__(self, normalized_shape):
        super(BiasFree_LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = (normalized_shape,)
        normalized_shape = torch.Size(normalized_shape)

        assert len(normalized_shape) == 1

        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.normalized_shape = normalized_shape

    def forward(self, x):
        sigma = x.var(-1, keepdim=True, unbiased=False)
        return x / torch.sqrt(sigma+1e-5) * self.weight

class WithBias_LayerNorm(nn.Module):
    def __init__(self, normalized_shape):
        super(WithBias_LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = (normalized_shape,)
        normalized_shape = torch.Size(normalized_shape)

        assert len(normalized_shape) == 1

        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
        self.normalized_shape = normalized_shape

    def forward(self, x):
        mu = x.mean(-1, keepdim=True)
        sigma = x.var(-1, keepdim=True, unbiased=False)
        return (x - mu) / torch.sqrt(sigma+1e-5) * self.weight + self.bias

class LayerNorm(nn.Module):
    def __init__(self, dim, LayerNorm_type):
        super(LayerNorm, self).__init__()
        if LayerNorm_type =='BiasFree':
            self.body = BiasFree_LayerNorm(dim)
        else:
            self.body = WithBias_LayerNorm(dim)

    def forward(self, x):
        h, w = x.shape[-2:]
        return to_4d(self.body(to_3d(x)), h, w)


## Gated-Dconv Feed-Forward Network (GDFN)
class GFeedForward(nn.Module):
    def __init__(self, dim, ffn_expansion_factor, bias):
        super(GFeedForward, self).__init__()

        hidden_features = int(dim * ffn_expansion_factor)

        self.project_in = nn.Conv2d(dim, hidden_features * 2, kernel_size=1, bias=bias)

        self.dwconv = nn.Conv2d(hidden_features * 2, hidden_features * 2, kernel_size=3, stride=1, padding=1,
                                groups=hidden_features * 2, bias=bias)

        self.project_out = nn.Conv2d(hidden_features, dim, kernel_size=1, bias=bias)

    def forward(self, x):
        x = self.project_in(x)
        x1, x2 = self.dwconv(x).chunk(2, dim=1)
        x = F.gelu(x1) * x2
        x = self.project_out(x)
        return x


##########################################################################
## Multi-DConv Head Transposed Self-Attention (MDTA)
class Attention(nn.Module):
    def __init__(self, dim, num_heads, bias):
        super(Attention, self).__init__()
        self.num_heads = num_heads
        self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1))

        self.qkv = nn.Conv2d(dim, dim * 3, kernel_size=1, bias=bias)
        self.qkv_dwconv = nn.Conv2d(dim * 3, dim * 3, kernel_size=3, stride=1, padding=1, groups=dim * 3, bias=bias)
        self.project_out = nn.Conv2d(dim, dim, kernel_size=1, bias=bias)

    def forward(self, x):
        b, c, h, w = x.shape

        qkv = self.qkv_dwconv(self.qkv(x))
        q, k, v = qkv.chunk(3, dim=1)

        q = rearrange(q, 'b (head c) h w -> b head c (h w)', head=self.num_heads)
        k = rearrange(k, 'b (head c) h w -> b head c (h w)', head=self.num_heads)
        v = rearrange(v, 'b (head c) h w -> b head c (h w)', head=self.num_heads)

        q = torch.nn.functional.normalize(q, dim=-1)
        k = torch.nn.functional.normalize(k, dim=-1)

        attn = (q @ k.transpose(-2, -1)) * self.temperature
        attn = attn.softmax(dim=-1)

        out = (attn @ v)

        out = rearrange(out, 'b head c (h w) -> b (head c) h w', head=self.num_heads, h=h, w=w)

        out = self.project_out(out)
        return out


class TransformerBlock(nn.Module):
    def __init__(self, dim=48, num_heads=8, ffn_expansion_factor=2.66, bias=False, LayerNorm_type=WithBias_LayerNorm):
        super(TransformerBlock, self).__init__()

        self.norm1 = LayerNorm(dim, LayerNorm_type)
        self.attn = Attention(dim, num_heads, bias)
        self.norm2 = LayerNorm(dim, LayerNorm_type)
        self.ffn = GFeedForward(dim, ffn_expansion_factor, bias)

    def forward(self, x):
        x = x + self.attn(self.norm1(x))
        x = x + self.ffn(self.norm2(x))

        return x


class BackBoneBlock(nn.Module):
    def __init__(self, num, fm, **args):
        super().__init__()
        self.arr = nn.ModuleList([])
        for _ in range(num):
            self.arr.append(fm(**args))

    def forward(self, x):
        for block in self.arr:
            x = block(x)
        return x


class PAConv(nn.Module):

    def __init__(self, nf, k_size=3):
        super(PAConv, self).__init__()
        self.k2 = nn.Conv2d(nf, nf, 1)  # 1x1 convolution nf->nf
        self.sigmoid = nn.Sigmoid()
        self.k3 = nn.Conv2d(nf, nf, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False)  # 3x3 convolution
        self.k4 = nn.Conv2d(nf, nf, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False)  # 3x3 convolution

    def forward(self, x):
        y = self.k2(x)
        y = self.sigmoid(y)

        out = torch.mul(self.k3(x), y)
        out = self.k4(out)

        return out


class SCPA(nn.Module):
    """SCPA is modified from SCNet (Jiang-Jiang Liu et al. Improving Convolutional Networks with Self-Calibrated Convolutions. In CVPR, 2020)
        Github: https://github.com/MCG-NKU/SCNet
    """

    def __init__(self, nf, reduction=2, stride=1, dilation=1):
        super(SCPA, self).__init__()
        group_width = nf // reduction

        self.conv1_a = nn.Conv2d(nf, group_width, kernel_size=1, bias=False)
        self.conv1_b = nn.Conv2d(nf, group_width, kernel_size=1, bias=False)

        self.k1 = nn.Sequential(
            nn.Conv2d(
                group_width, group_width, kernel_size=3, stride=stride,
                padding=dilation, dilation=dilation,
                bias=False)
        )

        self.PAConv = PAConv(group_width)

        self.conv3 = nn.Conv2d(
            group_width * reduction, nf, kernel_size=1, bias=False)

        self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)

    def forward(self, x):
        residual = x

        out_a = self.conv1_a(x)
        out_b = self.conv1_b(x)
        out_a = self.lrelu(out_a)
        out_b = self.lrelu(out_b)

        out_a = self.k1(out_a)
        out_b = self.PAConv(out_b)
        out_a = self.lrelu(out_a)
        out_b = self.lrelu(out_b)

        out = self.conv3(torch.cat([out_a, out_b], dim=1))
        out += residual

        return out


class SCET(nn.Module):
    def __init__(self, hiddenDim=32, mlpDim=128, scaleFactor=2):
        super().__init__()
        self.conv3 = nn.Conv2d(3, hiddenDim,
                               kernel_size=3, padding=1)

        lamRes = torch.nn.Parameter(torch.ones(1))
        lamX = torch.nn.Parameter(torch.ones(1))
        self.adaptiveWeight = (lamRes, lamX)
        if scaleFactor == 3:
            num_heads = 7
        else:
            num_heads = 8
        self.path1 = nn.Sequential(
            BackBoneBlock(16, SCPA, nf=hiddenDim, reduction=2, stride=1, dilation=1),
            BackBoneBlock(1, TransformerBlock,
                          dim=hiddenDim, num_heads=num_heads, ffn_expansion_factor=2.66, bias=False, LayerNorm_type=WithBias_LayerNorm),
            nn.Conv2d(hiddenDim, hiddenDim, kernel_size=3, padding=1),
            nn.PixelShuffle(scaleFactor),
            nn.Conv2d(hiddenDim // (scaleFactor ** 2),
                      3, kernel_size=3, padding=1),
        )

        self.path2 = nn.Sequential(
            nn.PixelShuffle(scaleFactor),
            nn.Conv2d(hiddenDim // (scaleFactor ** 2),
                      3, kernel_size=3, padding=1),
        )

    def forward(self, x):
        x = self.conv3(x)
        x1, x2 = self.path1(x), self.path2(x)
        return x1 + x2


    def init_weights(self, pretrained=None, strict=True):
        """Init weights for models.
        Args:
            pretrained (str, optional): Path for pretrained weights. If given
                None, pretrained weights will not be loaded. Defaults to None.
            strict (boo, optional): Whether strictly load the pretrained model.
                Defaults to True.
        """
        if isinstance(pretrained, str):
            logger = get_root_logger()
            load_checkpoint(self, pretrained, strict=strict, logger=logger)
        elif pretrained is None:
            pass  # use default initialization
        else:
            raise TypeError('"pretrained" must be a str or None. '
                            f'But received {type(pretrained)}.')



if __name__ == '__main__':

    from torchstat import stat
    import time
    import torchsummary

    net = SCET(32, 128, 4).cuda()
    torchsummary.summary(net, (3, 48, 48))