# Adapted from https://github.com/kan-bayashi/ParallelWaveGAN # Original Copyright 2019 Tomoki Hayashi # MIT License (https://opensource.org/licenses/MIT) """STFT-based Loss modules.""" import torch import torch.nn.functional as F from distutils.version import LooseVersion is_pytorch_17plus = LooseVersion(torch.__version__) >= LooseVersion("1.7") torch.manual_seed(0) def stft(x, fft_size, hop_size, win_length, window): """Perform STFT and convert to magnitude spectrogram. Args: x (Tensor): Input signal tensor (B, T). fft_size (int): FFT size. hop_size (int): Hop size. win_length (int): Window length. window (str): Window function type. Returns: Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1). """ if is_pytorch_17plus: x_stft = torch.stft( x, fft_size, hop_size, win_length, window, return_complex=False ) else: x_stft = torch.stft(x, fft_size, hop_size, win_length, window) real = x_stft[..., 0] imag = x_stft[..., 1] # NOTE(kan-bayashi): clamp is needed to avoid nan or inf return torch.sqrt(torch.clamp(real**2 + imag**2, min=1e-7)).transpose(2, 1) class SpectralConvergenceLoss(torch.nn.Module): """Spectral convergence loss module.""" def __init__(self): """Initilize spectral convergence loss module.""" super(SpectralConvergenceLoss, self).__init__() def forward(self, x_mag, y_mag): """Calculate forward propagation. Args: x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins). y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins). Returns: Tensor: Spectral convergence loss value. """ return torch.norm(y_mag - x_mag, p="fro") / torch.norm(y_mag, p="fro") class LogSTFTMagnitudeLoss(torch.nn.Module): """Log STFT magnitude loss module.""" def __init__(self): """Initilize los STFT magnitude loss module.""" super(LogSTFTMagnitudeLoss, self).__init__() def forward(self, x_mag, y_mag): """Calculate forward propagation. Args: x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins). y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins). Returns: Tensor: Log STFT magnitude loss value. """ return F.l1_loss(torch.log(y_mag), torch.log(x_mag)) class STFTLoss(torch.nn.Module): """STFT loss module.""" def __init__( self, fft_size=1024, shift_size=120, win_length=600, window="hann_window", band="full" ): """Initialize STFT loss module.""" super(STFTLoss, self).__init__() self.fft_size = fft_size self.shift_size = shift_size self.win_length = win_length self.band = band self.spectral_convergence_loss = SpectralConvergenceLoss() self.log_stft_magnitude_loss = LogSTFTMagnitudeLoss() # NOTE(kan-bayashi): Use register_buffer to fix #223 self.register_buffer("window", getattr(torch, window)(win_length)) def forward(self, x, y): """Calculate forward propagation. Args: x (Tensor): Predicted signal (B, T). y (Tensor): Groundtruth signal (B, T). Returns: Tensor: Spectral convergence loss value. Tensor: Log STFT magnitude loss value. """ x_mag = stft(x, self.fft_size, self.shift_size, self.win_length, self.window) y_mag = stft(y, self.fft_size, self.shift_size, self.win_length, self.window) if self.band == "high": freq_mask_ind = x_mag.shape[1] // 2 # only select high frequency bands sc_loss = self.spectral_convergence_loss(x_mag[:,freq_mask_ind:,:], y_mag[:,freq_mask_ind:,:]) mag_loss = self.log_stft_magnitude_loss(x_mag[:,freq_mask_ind:,:], y_mag[:,freq_mask_ind:,:]) elif self.band == "full": sc_loss = self.spectral_convergence_loss(x_mag, y_mag) mag_loss = self.log_stft_magnitude_loss(x_mag, y_mag) else: raise NotImplementedError return sc_loss, mag_loss class MultiResolutionSTFTLoss(torch.nn.Module): """Multi resolution STFT loss module.""" def __init__( self, fft_sizes=[1024, 2048, 512], hop_sizes=[120, 240, 50], win_lengths=[600, 1200, 240], window="hann_window", sc_lambda=0.1, mag_lambda=0.1, band="full" ): """Initialize Multi resolution STFT loss module. Args: fft_sizes (list): List of FFT sizes. hop_sizes (list): List of hop sizes. win_lengths (list): List of window lengths. window (str): Window function type. *_lambda (float): a balancing factor across different losses. band (str): high-band or full-band loss """ super(MultiResolutionSTFTLoss, self).__init__() self.sc_lambda = sc_lambda self.mag_lambda = mag_lambda assert len(fft_sizes) == len(hop_sizes) == len(win_lengths) self.stft_losses = torch.nn.ModuleList() for fs, ss, wl in zip(fft_sizes, hop_sizes, win_lengths): self.stft_losses += [STFTLoss(fs, ss, wl, window, band)] def forward(self, x, y): """Calculate forward propagation. Args: x (Tensor): Predicted signal (B, T) or (B, #subband, T). y (Tensor): Groundtruth signal (B, T) or (B, #subband, T). Returns: Tensor: Multi resolution spectral convergence loss value. Tensor: Multi resolution log STFT magnitude loss value. """ if len(x.shape) == 3: x = x.view(-1, x.size(2)) # (B, C, T) -> (B x C, T) y = y.view(-1, y.size(2)) # (B, C, T) -> (B x C, T) sc_loss = 0.0 mag_loss = 0.0 for f in self.stft_losses: sc_l, mag_l = f(x, y) sc_loss += sc_l mag_loss += mag_l sc_loss *= self.sc_lambda sc_loss /= len(self.stft_losses) mag_loss *= self.mag_lambda mag_loss /= len(self.stft_losses) return sc_loss, mag_loss