import json import math import random import os import streamlit as st st.set_page_config(page_title="HuggingArtists") st.title("HuggingArtists") st.sidebar.markdown( """

""", unsafe_allow_html=True, ) st.sidebar.markdown( """

GitHub | Project Report

""", unsafe_allow_html=True, ) st.sidebar.header("SETTINGS") num_sequences = st.sidebar.number_input( "Number of sequences to generate", min_value=1, value=5, help="The amount of generated texts", ) min_length = st.sidebar.number_input( "Minimum length of the sequence", min_value=1, value=100, help="The minimum length of the sequence to be generated", ) max_length= st.sidebar.number_input( "Maximum length of the sequence", min_value=1, value=160, help="The maximum length of the sequence to be generated", ) temperature = st.sidebar.slider( "Temperature", min_value=0.0, max_value=3.0, step=0.01, value=1.0, help="The value used to module the next token probabilities", ) top_p = st.sidebar.slider( "Top-P", min_value=0.0, max_value=1.0, step=0.01, value=0.95, help="If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.", ) top_k= st.sidebar.number_input( "Top-K", min_value=0, value=50, step=1, help="The number of highest probability vocabulary tokens to keep for top-k-filtering.", ) caption = ( "`HuggingArtists` - Train a model to generate lyrics" "" "In HuggingArtists, we can generate lyrics by a specific artist. This was made by fine-tuning a pre-trained HuggingFace Transformer on parsed datasets from Genius." ) st.markdown(caption)