import gradio as gr import json import logging import argparse import torch import os from os import path from PIL import Image import numpy as np import spaces import copy import random import time from typing import Any, Dict, List, Optional, Union from huggingface_hub import hf_hub_download from diffusers import DiffusionPipeline, AutoencoderTiny, AutoPipelineForImage2Image, ConfigMixin, FluxTransformer2DModel import safetensors.torch from safetensors.torch import load_file from pipeline import FluxWithCFGPipeline from transformers import CLIPModel, CLIPProcessor, CLIPConfig import gc import warnings import safetensors.torch cache_path = path.join(path.dirname(path.abspath(__file__)), "models") os.environ["TRANSFORMERS_CACHE"] = cache_path os.environ["HF_HUB_CACHE"] = cache_path os.environ["HF_HOME"] = cache_path device = "cuda" if torch.cuda.is_available() else "cpu" torch.backends.cuda.matmul.allow_tf32 = True # Load LoRAs from JSON file with open('loras.json', 'r') as f: loras = json.load(f) dtype = torch.bfloat16 pipe = FluxWithCFGPipeline.from_pretrained("ostris/OpenFLUX.1", torch_dtype=dtype, num_single_layers=0, chunk_size=0).to("cuda") pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to("cuda") pipe.to("cuda") clipmodel = 'norm' if clipmodel == "long": model_id = "zer0int/LongCLIP-GmP-ViT-L-14" config = CLIPConfig.from_pretrained(model_id) if clipmodel == "norm": model_id = "zer0int/CLIP-GmP-ViT-L-14" config = CLIPConfig.from_pretrained(model_id) clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config, ignore_mismatched_sizes=False).to("cuda") clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", ignore_mismatched_sizes=False, return_tensors="pt", truncation=True) pipe.tokenizer = clip_processor.tokenizer pipe.text_encoder = clip_model.text_model pipe.text_encoder.dtype = torch.bfloat16 torch.cuda.empty_cache() num_single_layers=0 chunk_size=0 MAX_SEED = 2**32-1 class calculateDuration: def __init__(self, activity_name=""): self.activity_name = activity_name def __enter__(self): self.start_time = time.time() return self def __exit__(self, exc_type, exc_value, traceback): self.end_time = time.time() self.elapsed_time = self.end_time - self.start_time if self.activity_name: print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") else: print(f"Elapsed time: {self.elapsed_time:.6f} seconds") def update_selection(evt: gr.SelectData, width, height): selected_lora = loras[evt.index] new_placeholder = f"Type a prompt for {selected_lora['title']}" lora_repo = selected_lora["repo"] updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨" if "aspect" in selected_lora: if selected_lora["aspect"] == "portrait": width = 768 height = 1024 elif selected_lora["aspect"] == "landscape": width = 1024 height = 768 return ( gr.update(placeholder=new_placeholder), updated_text, evt.index, width, height, ) @spaces.GPU(duration=70) def generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, negative_prompt, lora_scale, progress): pipe.to("cuda") generator = torch.Generator(device="cuda").manual_seed(seed) with calculateDuration("Generating image"): # Generate image image = pipe( prompt=f"{prompt} {trigger_word}", negative_prompt=negative_prompt, num_inference_steps=steps, guidance_scale=cfg_scale, width=width, height=height, generator=generator, joint_attention_kwargs={"scale": lora_scale}, ).images[0] return image def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, negative_prompt, lora_scale, progress=gr.Progress(track_tqdm=True)): if negative_prompt == "": negative_prompt = None if selected_index is None: raise gr.Error("You must select a LoRA before proceeding.") selected_lora = loras[selected_index] lora_path = selected_lora["repo"] trigger_word = selected_lora["trigger_word"] # Load LoRA weights with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"): if "weights" in selected_lora: pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"]) else: pipe.load_lora_weights(lora_path) # Set random seed for reproducibility with calculateDuration("Randomizing seed"): if randomize_seed: seed = random.randint(0, MAX_SEED) image = generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, negative_prompt, lora_scale, progress) pipe.to("cpu") pipe.unload_lora_weights() return image, seed run_lora.zerogpu = True css = ''' #gen_btn{height: 100%} #title{text-align: center} #title h1{font-size: 3em; display:inline-flex; align-items:center} #title img{width: 100px; margin-right: 0.5em} #gallery .grid-wrap{height: 10vh} ''' with gr.Blocks(theme=gr.themes.Soft(), css=css) as app: title = gr.HTML( """