import gradio as gr import json import logging import argparse import torch import os from os import path from PIL import Image import numpy as np import spaces import copy import random import time from typing import Any, Dict, List, Optional, Union from huggingface_hub import hf_hub_download from diffusers import DiffusionPipeline, AutoencoderTiny, AutoPipelineForImage2Image import safetensors.torch from safetensors.torch import load_file from pipeline import FluxWithCFGPipeline from transformers import CLIPModel, CLIPProcessor, CLIPConfig import gc cache_path = path.join(path.dirname(path.abspath(__file__)), "models") os.environ["TRANSFORMERS_CACHE"] = cache_path os.environ["HF_HUB_CACHE"] = cache_path os.environ["HF_HOME"] = cache_path device = "cuda" if torch.cuda.is_available() else "cpu" torch.backends.cuda.matmul.allow_tf32 = True torch._inductor.config.conv_1x1_as_mm = True torch._inductor.config.coordinate_descent_tuning = True torch._inductor.config.epilogue_fusion = False torch._inductor.config.coordinate_descent_check_all_directions = True dtype = torch.bfloat16 pipe = FluxWithCFGPipeline.from_pretrained("ostris/OpenFLUX.1", torch_dtype=dtype, text_encoder_3=None, tokenizer_3=None ).to("cuda") pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to("cuda") pipe.to("cuda") clipmodel = 'norm' if clipmodel == "long": model_id = "zer0int/LongCLIP-GmP-ViT-L-14" config = CLIPConfig.from_pretrained(model_id) maxtokens = 77 if clipmodel == "norm": model_id = "zer0int/CLIP-GmP-ViT-L-14" config = CLIPConfig.from_pretrained(model_id) maxtokens = 77 clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config, ignore_mismatched_sizes=True).to("cuda") clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=maxtokens, ignore_mismatched_sizes=True, return_tensors="pt", truncation=True) config.text_config.max_position_embeddings = 77 pipe.tokenizer = clip_processor.tokenizer pipe.text_encoder = clip_model.text_model pipe.tokenizer_max_length = maxtokens pipe.text_encoder.dtype = torch.bfloat16 torch.cuda.empty_cache() pipe.transformer.to(memory_format=torch.channels_last) pipe.vae.to(memory_format=torch.channels_last) pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True) pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=True) # Load LoRAs from JSON file with open('loras.json', 'r') as f: loras = json.load(f) MAX_SEED = 2**32-1 class calculateDuration: def __init__(self, activity_name=""): self.activity_name = activity_name def __enter__(self): self.start_time = time.time() return self def __exit__(self, exc_type, exc_value, traceback): self.end_time = time.time() self.elapsed_time = self.end_time - self.start_time if self.activity_name: print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") else: print(f"Elapsed time: {self.elapsed_time:.6f} seconds") def update_selection(evt: gr.SelectData, width, height): selected_lora = loras[evt.index] new_placeholder = f"Type a prompt for {selected_lora['title']}" lora_repo = selected_lora["repo"] updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨" if "aspect" in selected_lora: if selected_lora["aspect"] == "portrait": width = 768 height = 1024 elif selected_lora["aspect"] == "landscape": width = 1024 height = 768 return ( gr.update(placeholder=new_placeholder), updated_text, evt.index, width, height, ) @spaces.GPU(duration=70) def generate_image(prompt, negative_prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale): pipe.to("cuda") generator = torch.Generator(device="cuda").manual_seed(seed) with calculateDuration("Generating image"): # Generate image image = pipe( prompt=f"{prompt} {trigger_word}", negative_prompt=negative_prompt, num_inference_steps=steps, guidance_scale=cfg_scale, lora_scale=joint_attention_kwargs, width=width, height=height, generator=generator, joint_attention_kwargs={"scale": lora_scale}, ).images[0] return image def run_lora(prompt, negative_prompt, cfg_scale, steps, selected_index, seed, width, height, lora_scale): if negative_prompt == "": negative_prompt = None if selected_index is None: raise gr.Error("Select a LoRA adapter square before proceeding.") selected_lora = loras[selected_index] lora_path = selected_lora["repo"] trigger_word = selected_lora["trigger_word"] if(trigger_word): if "trigger_position" in selected_lora: if selected_lora["trigger_position"] == "prepend": prompt_mash = f"{trigger_word} {prompt}" else: prompt_mash = f"{prompt} {trigger_word}" else: prompt_mash = f"{trigger_word} {prompt}" else: prompt_mash = prompt # Load LoRA weights with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"): if "weights" in selected_lora: pipe.load_lora_weights("ostris/OpenFLUX.1", weight_name="openflux1-v0.1.0-fast-lora.safetensors", adapter_weights=[1.0], lora_scale=[1.0]) pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"], adapter_name=selected_lora["repo"], lora_scale=[1.0], adapter_weights=selected_lora[lora_scale]) pipe.set_adapters(["fast", selected_lora["repo"]], adapter_weights=[1.0, selected_lora[lora_scale]]) else: pipe.load_lora_weights("ostris/OpenFLUX.1", weight_name="openflux1-v0.1.0-fast-lora.safetensors", adapter_weights=[1.0], lora_scale=[1.0]) pipe.load_lora_weights(lora_path, adapter_name=selected_lora["repo"], adapter_weights=selected_lora[lora_scale]) pipe.set_adapters(["fast", selected_lora["repo"]], adapter_weights=[1.0, selected_lora[lora_scale]]) image = generate_image(prompt, negative_prompt, steps, seed, cfg_scale, width, height, lora_scale) pipe.to("cpu") pipe.unload_lora_weights() return image, seed run_lora.zerogpu = True #pipe.load_lora_weights("ostris/OpenFLUX.1", weight_name="openflux1-v0.1.0-fast-lora.safetensors", adapter_name="fast") #pipe.set_adapters("fast") #pipe.set_adapters(["fast", "toy"], adapter_weights=[0.5, 1.0]) #pipe.fuse_lora(adapter_names=["fast"], lora_scale=1.0) css = ''' #gen_btn{height: 100%} #title{text-align: center} #title h1{font-size: 3em; display:inline-flex; align-items:center} #title img{width: 100px; margin-right: 0.5em} #gallery .grid-wrap{height: 10vh} ''' with gr.Blocks(theme=gr.themes.Soft(), css=css) as app: title = gr.HTML( """

LoRAOpenFlux LoRAsoon®

""", elem_id="title", ) # Info blob stating what the app is running info_blob = gr.HTML( """
SOON®'s curated LoRa Gallery & Art Manufactory Space.|Runs on Ostris' OpenFLUX.1 model + fast-gen LoRA & Zer0int's fine-tuned CLIP-GmP-ViT-L-14*! (*'normal' 77 tokens)| Largely stocked w/our trained LoRAs: Historic Color, Silver Age Poets, Sots Art, more!|
""" ) # Info blob stating what the app is running info_blob = gr.HTML( """
*Auto-planting of prompts with a choice LoRA trigger errors out in this space over flaws yet unclear. In its stead, we pose numbered LoRA-box rows & a matched token cheat-sheet: ungainly & free. So, prephrase your prompts w/: 1-2. HST style autochrome |3. RCA style Communist poster |4. SOTS art |5. HST Austin Osman Spare style |6. Vladimir Mayakovsky |7-8. Marina Tsvetaeva Tsvetaeva_02.CR2 |9. Anna Akhmatova |10. Osip Mandelshtam |11-12. Alexander Blok |13. Blok_02.CR2 |14. LEN Lenin |15. Leon Trotsky |16. Rosa Fluxemburg |17. HST Peterhof photo |18-19. HST |20. HST portrait |21. HST |22. HST 80s Perestroika-era Soviet photo |23-30. HST |31. How2Draw a__ |32. propaganda poster |33. TOK hybrid photo of__ with cartoon of__ |34. 2004 IMG_1099.CR2 photo |35. unexpected photo of |36. flmft |37. 80s yearbook photo |38. TOK portra |39. pficonics |40. retrofuturism |41. wh3r3sw4ld0 |42. amateur photo |43. crisp |44-45. IMG_1099.CR2 |46. FilmFotos |47. ff-collage |48. HST |49-50. AOS |51. cover
""" ) selected_index = gr.State(None) with gr.Row(): with gr.Column(scale=3): prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Select LoRa/Style & type prompt! What do you want to see?") with gr.Row(): with gr.Column(scale=3): negative_prompt = gr.Textbox(label="Negative Prompt", lines=1, placeholder="List unwanted conditions, open-fluxedly!") with gr.Column(scale=1, elem_id="gen_column"): generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn") with gr.Row(): with gr.Column(scale=3): selected_info = gr.Markdown("") gallery = gr.Gallery( [(item["image"], item["title"]) for item in loras], label="LoRA Inventory", allow_preview=False, columns=3, elem_id="gallery" ) with gr.Column(scale=4): result = gr.Image(label="Generated Image") with gr.Row(): with gr.Accordion("Advanced Settings", open=True): with gr.Column(): with gr.Row(): cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3) steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=6) with gr.Row(): width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024) height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024) with gr.Row(): seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=2.0, step=0.01, value=0.85) gallery.select( update_selection, inputs=[width, height], outputs=[prompt, selected_info, selected_index, width, height] ) gr.on( triggers=[generate_button.click, prompt.submit], fn=run_lora, inputs=[prompt, negative_prompt, cfg_scale, steps, selected_index, seed, width, height, lora_scale], outputs=[result, seed] ) app.queue(default_concurrency_limit=None).launch(show_error=True) app.launch()