Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,460 Bytes
0e9fbd7 96a8ce2 0e9fbd7 7e1b760 0e9fbd7 34414bc 0e9fbd7 34414bc 694df49 0e9fbd7 197711b 7e1b760 197711b 7e1b760 a272613 7e1b760 34414bc a272613 694df49 34414bc a272613 694df49 0e9fbd7 7716209 0e9fbd7 868ec74 0e9fbd7 7716209 0e9fbd7 7716209 0e9fbd7 7716209 0e9fbd7 c000701 0e9fbd7 c000701 0e9fbd7 868ec74 0e9fbd7 868ec74 0e9fbd7 868ec74 0e9fbd7 e8d61e0 0e9fbd7 c000701 0e9fbd7 c000701 0e9fbd7 868ec74 0e9fbd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import os
import gradio as gr
import json
import logging
import torch
from PIL import Image
from os import path
import spaces
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
from diffusers.models.transformers import FluxTransformer2DModel
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from transformers import CLIPModel, CLIPProcessor, CLIPTextModel, CLIPTokenizer, CLIPConfig, T5EncoderModel, T5Tokenizer
import copy
import random
import time
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
from huggingface_hub import HfFileSystem, ModelCard
from huggingface_hub import login, hf_hub_download
import safetensors.torch
from safetensors.torch import load_file
hf_token = os.environ.get("HF_TOKEN")
login(token=hf_token)
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
torch.set_float32_matmul_precision("medium")
#torch._inductor.config.conv_1x1_as_mm = True
#torch._inductor.config.coordinate_descent_tuning = True
#torch._inductor.config.epilogue_fusion = False
#torch._inductor.config.coordinate_descent_check_all_directions = False
# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
loras = json.load(f)
# Initialize the base model
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained(
"jimmycarter/LibreFLUX",
custom_pipeline="jimmycarter/LibreFLUX",
use_safetensors=True,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
).to(device)
clipmodel = 'norm'
if clipmodel == "long":
model_id = "zer0int/LongCLIP-GmP-ViT-L-14"
config = CLIPConfig.from_pretrained(model_id)
maxtokens = 77
if clipmodel == "norm":
model_id = "zer0int/CLIP-GmP-ViT-L-14"
config = CLIPConfig.from_pretrained(model_id)
maxtokens = 77
clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config, ignore_mismatched_sizes=True).to("cuda")
clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=maxtokens, ignore_mismatched_sizes=True, return_tensors="pt", truncation=True)
pipe.tokenizer = clip_processor.tokenizer
pipe.text_encoder = clip_model.text_model
pipe.tokenizer_max_length = maxtokens
pipe.text_encoder.dtype = torch.bfloat16
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to("cuda")
#pipe.transformer.to(memory_format=torch.channels_last)
#pipe.vae.to(memory_format=torch.channels_last)
#pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=False)
#pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=False)
MAX_SEED = 2**32-1
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
def update_selection(evt: gr.SelectData, width, height):
selected_lora = loras[evt.index]
new_placeholder = f"Type a prompt for {selected_lora['title']}"
lora_repo = selected_lora["repo"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
if "aspect" in selected_lora:
if selected_lora["aspect"] == "portrait":
width = 768
height = 1024
elif selected_lora["aspect"] == "landscape":
width = 1024
height = 768
return (
gr.update(placeholder=new_placeholder),
updated_text,
evt.index,
width,
height,
)
@spaces.GPU(duration=70)
def generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, negative_prompt, lora_scale, progress, no_cfg_until_timestep):
pipe.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(seed)
with calculateDuration("Generating image"):
# Generate image
image = pipe(
prompt=f"{prompt} {trigger_word}",
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
negative_prompt=negative_prompt,
joint_attention_kwargs={"scale": lora_scale},
no_cfg_until_timestep=2,
).images[0]
return image
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, negative_prompt, lora_scale, no_cfg_until_timestep=2, progress=gr.Progress(track_tqdm=True)):
if selected_index is None:
raise gr.Error("You must select a LoRA before proceeding.")
selected_lora = loras[selected_index]
lora_path = selected_lora["repo"]
trigger_word = selected_lora["trigger_word"]
if(trigger_word):
if "trigger_position" in selected_lora:
if selected_lora["trigger_position"] == "prepend":
prompt_mash = f"{trigger_word} {prompt}"
else:
prompt_mash = f"{prompt} {trigger_word}"
else:
prompt_mash = f"{trigger_word} {prompt}"
else:
prompt_mash = prompt
# Load LoRA weights
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
if "weights" in selected_lora:
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
else:
pipe.load_lora_weights(lora_path)
# Set random seed for reproducibility
with calculateDuration("Randomizing seed"):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
image = generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, negative_prompt, lora_scale, progress, no_cfg_until_timestep)
pipe.to("cpu")
pipe.unload_lora_weights()
return image, seed
run_lora.zerogpu = True
css = '''
#gen_btn{height: 100%}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
'''
with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
title = gr.HTML(
"""<h1><img src="https://huggingface.co/AlekseyCalvin/HSTklimbimOPENfluxLora/resolve/main/acs62iv.png" alt="LoRA"> LibreFLUX SOONfactory </h1>""",
elem_id="title",
)
# Info blob stating what the app is running
info_blob = gr.HTML(
"""<div id="info_blob"> SOON®'s curated LoRa Gallery & Art Manufactory Space | Over LibreFLUX (jimmycarter/LibreFLUX): a slowish, rawer, & freest Flux de-distilled from Schnell + Zer0int's fine-tuned CLIP(*'norm' 77 size for now)| Largely stocked w/our trained LoRAs: Historic Color, Silver Age Poets, Sots Art, more!|</div>"""
)
# Info blob stating what the app is running
info_blob = gr.HTML(
"""<div id="info_blob"> Pre-phrase Prompts w/: 1-2. HST style |3. RCA poster |4.SOTS art |5.HST Austin Osman Spare |6. Mayakovsky |7-8. Tsvetaeva |9. Akhmatova |10. Mandelshtam |11-13. Blok |14. LEN Lenin |15. Trotsky |16. Rosa Fluxenburg |17-30. HST |31. how2draw |32. propaganda poster |33. TOK photo cartoon hybrid |34. photo |35.unexpected photo |36. flmft |37. Yearbook |38. TOK portra |39. pficonics |40. retrofuturism |41. wh3r3sw4ld0 |42. amateur photo |43. crisp photo |44-45. ADU |46. Film Photo |47. ff-collage |48. HST|49-50. AOS Austin Osman Spare art |51. cover </div>"""
)
selected_index = gr.State(None)
with gr.Row():
with gr.Column(scale=2):
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Select LoRa/Style & type prompt!")
with gr.Column(scale=2):
negative_prompt = gr.Textbox(label="Negative Prompt", lines=1, placeholder="What to exclude!")
with gr.Column(scale=1, elem_id="gen_column"):
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
with gr.Row():
with gr.Column(scale=3):
selected_info = gr.Markdown("")
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="LoRA Inventory",
allow_preview=False,
columns=3,
elem_id="gallery"
)
with gr.Column(scale=4):
result = gr.Image(label="Generated Image")
with gr.Row():
with gr.Accordion("Advanced Settings", open=True):
with gr.Column():
with gr.Row():
cfg_scale = gr.Slider(label="CFG Scale", minimum=0, maximum=20, step=0.5, value=2.5)
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=20)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=768)
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=768)
with gr.Row():
randomize_seed = gr.Checkbox(True, label="Randomize seed")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=2.0, step=0.01, value=0.9)
gallery.select(
update_selection,
inputs=[width, height],
outputs=[prompt, selected_info, selected_index, width, height]
)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=run_lora,
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, negative_prompt, lora_scale],
outputs=[result, seed]
)
app.queue(default_concurrency_limit=2).launch(show_error=True)
app.launch() |