File size: 10,460 Bytes
0e9fbd7
 
 
 
 
 
96a8ce2
0e9fbd7
7e1b760
 
 
 
0e9fbd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34414bc
0e9fbd7
34414bc
 
 
 
694df49
0e9fbd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197711b
7e1b760
 
 
197711b
7e1b760
 
 
 
 
 
 
 
 
 
 
a272613
 
7e1b760
34414bc
a272613
694df49
34414bc
a272613
694df49
0e9fbd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7716209
0e9fbd7
 
 
 
 
 
 
 
 
 
 
 
868ec74
0e9fbd7
7716209
0e9fbd7
 
 
7716209
0e9fbd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7716209
0e9fbd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c000701
0e9fbd7
 
 
 
c000701
0e9fbd7
 
 
 
868ec74
0e9fbd7
 
 
868ec74
0e9fbd7
868ec74
 
0e9fbd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8d61e0
 
0e9fbd7
 
c000701
 
0e9fbd7
 
 
 
c000701
0e9fbd7
 
 
 
 
 
 
 
 
 
868ec74
0e9fbd7
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import os
import gradio as gr
import json
import logging
import torch
from PIL import Image
from os import path
import spaces
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
from diffusers.models.transformers import FluxTransformer2DModel
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from transformers import CLIPModel, CLIPProcessor, CLIPTextModel, CLIPTokenizer, CLIPConfig, T5EncoderModel, T5Tokenizer
import copy
import random
import time
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
from huggingface_hub import HfFileSystem, ModelCard
from huggingface_hub import login, hf_hub_download
import safetensors.torch
from safetensors.torch import load_file
hf_token = os.environ.get("HF_TOKEN")
login(token=hf_token)

cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path

torch.set_float32_matmul_precision("medium")

#torch._inductor.config.conv_1x1_as_mm = True
#torch._inductor.config.coordinate_descent_tuning = True
#torch._inductor.config.epilogue_fusion = False
#torch._inductor.config.coordinate_descent_check_all_directions = False

# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
    loras = json.load(f)

# Initialize the base model
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)

pipe = DiffusionPipeline.from_pretrained(
"jimmycarter/LibreFLUX",
custom_pipeline="jimmycarter/LibreFLUX",
use_safetensors=True,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
).to(device)

clipmodel = 'norm'
if clipmodel == "long":
    model_id = "zer0int/LongCLIP-GmP-ViT-L-14"
    config = CLIPConfig.from_pretrained(model_id)
    maxtokens = 77
if clipmodel == "norm":
    model_id = "zer0int/CLIP-GmP-ViT-L-14"
    config = CLIPConfig.from_pretrained(model_id)
    maxtokens = 77
clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config, ignore_mismatched_sizes=True).to("cuda")
clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=maxtokens, ignore_mismatched_sizes=True, return_tensors="pt", truncation=True)

pipe.tokenizer = clip_processor.tokenizer
pipe.text_encoder = clip_model.text_model
pipe.tokenizer_max_length = maxtokens
pipe.text_encoder.dtype = torch.bfloat16
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to("cuda")


#pipe.transformer.to(memory_format=torch.channels_last)
#pipe.vae.to(memory_format=torch.channels_last)

#pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=False)
#pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=False)

MAX_SEED = 2**32-1

class calculateDuration:
    def __init__(self, activity_name=""):
        self.activity_name = activity_name

    def __enter__(self):
        self.start_time = time.time()
        return self
    
    def __exit__(self, exc_type, exc_value, traceback):
        self.end_time = time.time()
        self.elapsed_time = self.end_time - self.start_time
        if self.activity_name:
            print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
        else:
            print(f"Elapsed time: {self.elapsed_time:.6f} seconds")


def update_selection(evt: gr.SelectData, width, height):
    selected_lora = loras[evt.index]
    new_placeholder = f"Type a prompt for {selected_lora['title']}"
    lora_repo = selected_lora["repo"]
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
    if "aspect" in selected_lora:
        if selected_lora["aspect"] == "portrait":
            width = 768
            height = 1024
        elif selected_lora["aspect"] == "landscape":
            width = 1024
            height = 768
    return (
        gr.update(placeholder=new_placeholder),
        updated_text,
        evt.index,
        width,
        height,
    )

@spaces.GPU(duration=70)
def generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, negative_prompt, lora_scale, progress, no_cfg_until_timestep):
    pipe.to("cuda")
    generator = torch.Generator(device="cuda").manual_seed(seed)
    
    with calculateDuration("Generating image"):
        # Generate image
        image = pipe(
            prompt=f"{prompt} {trigger_word}",
            num_inference_steps=steps,
            guidance_scale=cfg_scale,
            width=width,
            height=height,
            generator=generator,
            negative_prompt=negative_prompt,
            joint_attention_kwargs={"scale": lora_scale},
            no_cfg_until_timestep=2,
        ).images[0]
    return image

def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, negative_prompt, lora_scale, no_cfg_until_timestep=2, progress=gr.Progress(track_tqdm=True)):
    if selected_index is None:
        raise gr.Error("You must select a LoRA before proceeding.")

    selected_lora = loras[selected_index]
    lora_path = selected_lora["repo"]
    trigger_word = selected_lora["trigger_word"]
    if(trigger_word):
        if "trigger_position" in selected_lora:
            if selected_lora["trigger_position"] == "prepend":
                prompt_mash = f"{trigger_word} {prompt}"
            else:
                prompt_mash = f"{prompt} {trigger_word}"
        else:
            prompt_mash = f"{trigger_word} {prompt}"
    else:
        prompt_mash = prompt

    # Load LoRA weights
    with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
        if "weights" in selected_lora:
            pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
        else:
            pipe.load_lora_weights(lora_path)
        
    # Set random seed for reproducibility
    with calculateDuration("Randomizing seed"):
        if randomize_seed:
            seed = random.randint(0, MAX_SEED)
    
    image = generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, negative_prompt, lora_scale, progress, no_cfg_until_timestep)
    pipe.to("cpu")
    pipe.unload_lora_weights()
    return image, seed  

run_lora.zerogpu = True

css = '''
#gen_btn{height: 100%}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
'''
with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
    title = gr.HTML(
        """<h1><img src="https://huggingface.co/AlekseyCalvin/HSTklimbimOPENfluxLora/resolve/main/acs62iv.png" alt="LoRA"> LibreFLUX SOONfactory </h1>""",
        elem_id="title",
    )
    	    # Info blob stating what the app is running
    info_blob = gr.HTML(
        """<div id="info_blob"> SOON®'s curated LoRa Gallery & Art Manufactory Space | Over LibreFLUX (jimmycarter/LibreFLUX): a slowish, rawer, & freest Flux de-distilled from Schnell + Zer0int's fine-tuned CLIP(*'norm' 77 size for now)| Largely stocked w/our trained LoRAs: Historic Color, Silver Age Poets, Sots Art, more!|</div>"""
    )

        # Info blob stating what the app is running
    info_blob = gr.HTML(
        """<div id="info_blob"> Pre-phrase Prompts w/: 1-2. HST style |3. RCA poster |4.SOTS art |5.HST Austin Osman Spare |6. Mayakovsky |7-8. Tsvetaeva |9. Akhmatova |10. Mandelshtam |11-13. Blok |14. LEN Lenin |15. Trotsky |16. Rosa Fluxenburg |17-30. HST |31. how2draw |32. propaganda poster |33. TOK photo cartoon hybrid |34. photo |35.unexpected photo |36. flmft |37. Yearbook |38. TOK portra |39. pficonics |40. retrofuturism |41. wh3r3sw4ld0 |42. amateur photo |43. crisp photo |44-45. ADU |46. Film Photo |47. ff-collage |48. HST|49-50. AOS Austin Osman Spare art |51. cover </div>"""
    )
    selected_index = gr.State(None)
    with gr.Row():
        with gr.Column(scale=2):
            prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Select LoRa/Style & type prompt!")
        with gr.Column(scale=2):
            negative_prompt = gr.Textbox(label="Negative Prompt", lines=1, placeholder="What to exclude!")
        with gr.Column(scale=1, elem_id="gen_column"):
            generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
    with gr.Row():
        with gr.Column(scale=3):
            selected_info = gr.Markdown("")
            gallery = gr.Gallery(
                [(item["image"], item["title"]) for item in loras],
                label="LoRA Inventory",
                allow_preview=False,
                columns=3,
                elem_id="gallery"
            )
            
        with gr.Column(scale=4):
            result = gr.Image(label="Generated Image")

    with gr.Row():
        with gr.Accordion("Advanced Settings", open=True):
            with gr.Column():
                with gr.Row():
                    cfg_scale = gr.Slider(label="CFG Scale", minimum=0, maximum=20, step=0.5, value=2.5)
                    steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=20)
                
                with gr.Row():
                    width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=768)
                    height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=768)
                
                with gr.Row():
                    randomize_seed = gr.Checkbox(True, label="Randomize seed")
                    seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
                    lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=2.0, step=0.01, value=0.9)

    gallery.select(
        update_selection,
        inputs=[width, height],
        outputs=[prompt, selected_info, selected_index, width, height]
    )

    gr.on(
        triggers=[generate_button.click, prompt.submit],
        fn=run_lora,
        inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, negative_prompt, lora_scale],
        outputs=[result, seed]
    )

app.queue(default_concurrency_limit=2).launch(show_error=True)
app.launch()