import streamlit as st import pickle import tensorflow as tf from PIL import Image import numpy as np import cv2 import pandas as pd from tensorflow.keras.datasets import imdb from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.models import save_model, load_model from BackPropogation import BackPropogation from sklearn.model_selection import train_test_split def cnn_tumor(img): img=Image.open(img) img=np.array(img) img=cv2.cvtColor(img,cv2.COLOR_RGB2BGR) img_array = cv2.medianBlur(img, 5) img = Image.fromarray(cv2.cvtColor(img_array, cv2.COLOR_BGR2RGB)) img=img.resize((128,128)) input_img = np.expand_dims(img, axis=0) st.image(input_img, caption='Image Processing', use_column_width=True) loaded_model = tf.keras.models.load_model('cnn_model.h5') predictions = loaded_model.predict(input_img) if predictions: st.write("Tumor Detected") else: st.write("No Tumor") def perceptron(): with open('perceptron_model.pkl', 'rb') as file: loaded_model = pickle.load(file) top_words = 5000 (X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=top_words) word_index = imdb.get_word_index() reverse_word_index = dict([(value, key) for (key, value) in word_index.items()]) user_input = st.text_input("Enter your movie review:") if st.button("Predict"): if user_input: st.write("Review:", user_input) user_input_sequence = [word_index.get(word, 0) for word in user_input.split()] processed_input = tf.keras.preprocessing.sequence.pad_sequences([user_input_sequence], maxlen=500, padding='post', truncating='post') prediction = loaded_model.predict(processed_input) sentiment = 'Positive' if prediction[0] > 0.5 else 'Negative' st.write("Predicted Sentiment:", sentiment) else: st.warning("Please enter a movie review.") def backprop(): with open('back-propagation_model.pkl', 'rb') as file: loaded_model = pickle.load(file) top_words = 5000 (X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=top_words) word_index = imdb.get_word_index() reverse_word_index = dict([(value, key) for (key, value) in word_index.items()]) user_input = st.text_input("Enter your movie review:") if st.button("Predict"): if user_input: st.write("Review:", user_input) user_input_sequence = [word_index.get(word, 0) for word in user_input.split()] processed_input = tf.keras.preprocessing.sequence.pad_sequences([user_input_sequence], maxlen=500, padding='post', truncating='post') prediction = loaded_model.predict(processed_input) sentiment = 'Positive' if prediction[0] > 0.5 else 'Negative' st.write("Predicted Sentiment:", sentiment) else: st.warning("Please enter a movie review.") def dnn_model(): user_input = st.text_input('Enter a sentence:') tokenizer = Tokenizer(num_words=10000, oov_token='') tokenizer.fit_on_texts([user_input]) sequences = tokenizer.texts_to_sequences([user_input]) padded_sequence = tf.keras.preprocessing.sequence.pad_sequences(sequences, maxlen=500, padding='post', truncating='post') loaded_model = tf.keras.models.load_model('dnn_model.h5') if st.button('Predict'): prediction = loaded_model.predict(np.array(padded_sequence)) sentiment = 'Positive' if prediction > 0.5 else 'Negative' st.success(f'Sentiment: {sentiment}, Confidence: {prediction[0][0]:.4f}') def rnn_model(): loaded_model = tf.keras.models.load_model('rnn_model.h5') user_input_sequence = st.text_area("Enter your text message:") if st.button('Predict'): if user_input_sequence: tokenizer = Tokenizer(num_words=5000) tokenizer.fit_on_texts([user_input_sequence]) sequences = tokenizer.texts_to_sequences([user_input_sequence]) processed_input = tf.keras.preprocessing.sequence.pad_sequences(sequences, maxlen=10, padding='post', truncating='post') prediction = loaded_model.predict(np.array(processed_input)) is_spam = 'Spam' if prediction[0] > 0.5 else 'Not Spam' st.write("Predicted Label:", is_spam) else: st.warning("Please enter a text message.") def lstm_model(): user_input = st.text_input('Enter a sentence:') tokenizer = Tokenizer(num_words=10000, oov_token='') tokenizer.fit_on_texts([user_input]) sequences = tokenizer.texts_to_sequences([user_input]) padded_sequence = tf.keras.preprocessing.sequence.pad_sequences(sequences, maxlen=500, padding='post', truncating='post') loaded_model = tf.keras.models.load_model('lstm_model.h5') if st.button('Predict Sentiment'): prediction = loaded_model.predict(np.array(padded_sequence)) sentiment = 'Positive' if prediction > 0.5 else 'Negative' st.success(f'Sentiment: {sentiment}, Confidence: {prediction[0][0]:.4f}') st.title('Model Prediction') option = st.selectbox("Select One",['Tumor Detection','Sentiment Classification']) if option=='Tumor Detection': st.title('CNN Tumor Detection Model') img=st.file_uploader("Upload your file here.....", type=['png', 'jpeg', 'jpg']) cnn_tumor(img) else: opt=st.radio("Select your prediction",key="visibility",options=["Perceptron",'Backpropogation','DNN','RNN','LSTM']) if opt=="Perceptron": st.title('Perceptron Model') perceptron() elif opt=="Backpropogation": st.title('Backpropogation Model') backprop() elif opt=='RNN': st.title('RNN Spam Detection') rnn_model() elif opt=='DNN': st.title('DNN Text Classification') dnn_model() else: st.title('LSTM Sentiment Analysis') lstm_model()