Spaces:
Sleeping
Sleeping
update
Browse filesfirst commit
app.py
CHANGED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from langchain_community.document_loaders import WebBaseLoader, PyPDFLoader
|
3 |
+
from langchain_community.vectorstores import Chroma
|
4 |
+
from langchain_community import embeddings
|
5 |
+
from langchain_community.chat_models import ChatOllama
|
6 |
+
from langchain_core.runnables import RunnablePassthrough
|
7 |
+
from langchain_core.output_parsers import StrOutputParser
|
8 |
+
from langchain_core.prompts import ChatPromptTemplate
|
9 |
+
from langchain.output_parsers import PydanticOutputParser
|
10 |
+
from langchain.text_splitter import CharacterTextSplitter
|
11 |
+
|
12 |
+
def process_input(urls, question):
|
13 |
+
model_local = ChatOllama(model="llama2")
|
14 |
+
# Convert string of URLs to list
|
15 |
+
urls_list = urls.split("\n")
|
16 |
+
docs = [WebBaseLoader(url).load() for url in urls_list]
|
17 |
+
docs_list = [item for sublist in docs for item in sublist]
|
18 |
+
|
19 |
+
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(chunk_size=7500, chunk_overlap=100)
|
20 |
+
doc_splits = text_splitter.split_documents(docs_list)
|
21 |
+
|
22 |
+
vectorstore = Chroma.from_documents(
|
23 |
+
documents=doc_splits,
|
24 |
+
collection_name="rag-chroma",
|
25 |
+
embedding=embeddings.ollama.OllamaEmbeddings(model='nomic-embed-text'),
|
26 |
+
)
|
27 |
+
retriever = vectorstore.as_retriever()
|
28 |
+
|
29 |
+
after_rag_template = """Answer the question based only on the following context:
|
30 |
+
{context}
|
31 |
+
Question: {question}
|
32 |
+
"""
|
33 |
+
after_rag_prompt = ChatPromptTemplate.from_template(after_rag_template)
|
34 |
+
after_rag_chain = (
|
35 |
+
{"context": retriever, "question": RunnablePassthrough()}
|
36 |
+
| after_rag_prompt
|
37 |
+
| model_local
|
38 |
+
| StrOutputParser()
|
39 |
+
)
|
40 |
+
return after_rag_chain.invoke(question)
|
41 |
+
|
42 |
+
import pyttsx3
|
43 |
+
engine = pyttsx3.init('sapi5')
|
44 |
+
voices = engine.getProperty('voices')
|
45 |
+
# print(voices[1].id)
|
46 |
+
engine.setProperty('voice', voices[0].id)
|
47 |
+
|
48 |
+
|
49 |
+
def speak(audio):
|
50 |
+
engine.say(audio)
|
51 |
+
engine.runAndWait()
|
52 |
+
|
53 |
+
|
54 |
+
# Define Gradio interface
|
55 |
+
iface = gr.Interface(fn=process_input,
|
56 |
+
inputs=[gr.Textbox(label="Enter URLs separated by new lines"), gr.Textbox(label="Question")],
|
57 |
+
# server_name
|
58 |
+
outputs="text",
|
59 |
+
title="Document Query with Ollama",
|
60 |
+
description="Enter URLs and a question to query the documents.")
|
61 |
+
|
62 |
+
iface.launch()
|