import gradio as gr import folium from folium.plugins import HeatMap from ingest import load_data from process import get_lat_lon from gradio_folium import Folium from folium import Map def update_header(file_info): if file_info is not None: filename = file_info.split('/')[-1] # Access the filename from the file_info dictionary header = f"

Nordic Balance Postcodes Map: {filename}

" # Update the Markdown content return header # Continue to pass the file_info to the next function if necessary def generate_map(file_path): # Load the postcodes postcode_mapping = load_data('data/ukpostcodes.csv') # Load the data (this needs to be adapted to work outside Flask) postcodes = load_data(file_path) # Get latitude, longitude, and count data for the specified postcodes lat_lon_data = get_lat_lon(postcodes, postcode_mapping) # Prepare data for different frequency bands low_freq_data = [ [data['latitude'], data['longitude']] for data in lat_lon_data if data['count'] == 1 and data['latitude'] and data['longitude'] ] med_freq_data = [ [data['latitude'], data['longitude']] for data in lat_lon_data if 2 <= data['count'] <= 5 and data['latitude'] and data['longitude'] ] high_freq_data = [ [data['latitude'], data['longitude']] for data in lat_lon_data if data['count'] > 5 and data['latitude'] and data['longitude'] ] # Create your map here using Folium map = Map(location=[51.505303, -0.13902], zoom_start=10) # Adding different heatmaps for different frequencies if low_freq_data: HeatMap(low_freq_data, radius=10, blur=10, gradient={0.8: 'blue', 1: 'lime'}).add_to(map) if med_freq_data: HeatMap(med_freq_data, radius=15, blur=10, gradient={0.8: 'orange', 1: 'lime'}).add_to(map) if high_freq_data: HeatMap(high_freq_data, radius=20, blur=10, gradient={0.8: 'red', 1: 'lime'}).add_to(map) return map # Define a Gradio interface with gr.Blocks() as demo: with gr.Row(): header = gr.Markdown(("

Nordic Balance Postcodes Map

")) with gr.Row(): map = Folium(value = Map(location=[51.505303, -0.13902], zoom_start=10), height=750) with gr.Row(): file_uploader = gr.UploadButton( label=("Upload"), file_count="single", file_types=[".csv", ".xlsx", '.xls'], interactive=True, scale=1, ) file_uploader.upload(fn = generate_map, inputs= file_uploader, outputs=map) file_uploader.upload(fn=update_header, inputs=file_uploader, outputs=header) if __name__ == "__main__": demo.launch()