import streamlit as st import torch from transformers import BertTokenizer BERT_MODEL_NAME = 'bert-base-cased' tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_NAME) model = torch.load("./model.pt") st.title("Analisis de Sentimientos") txt = st.text_area(label="Please write what you want to analyze...") def run_sentiment_analysis (txt) : THRESHOLD = 0.5 encoding = tokenizer.encode_plus( txt, add_special_tokens=True, max_length=512, return_token_type_ids=False, padding="max_length", return_attention_mask=True, return_tensors='pt', ) _, test_prediction = model(encoding["input_ids"], encoding["attention_mask"]) test_prediction = test_prediction.flatten().numpy() predictions = [] print('-------------------- Predictions ---------------------') for label, prediction in zip(LABEL_COLUMNS, test_prediction): if prediction < THRESHOLD: continue predictions.append(" ".join([label,str(prediction)])) return predictions predictions = run_sentiment_analysis(txt) for prediction in predictions: st.write(prediction)