import streamlit as st import pickle import pandas as pd import requests def fetch_poster(movie_id): data = requests.get('https://api.themoviedb.org/3/movie/{}?api_key=3da50835eefad1461468d6eedd91edf7&language=en-US'.format(movie_id)) data = data.json() return "https://image.tmdb.org/t/p/w500/" + data['poster_path'] def recommend(movie): movie_index = movies[movies['title'] == movie].index[0] distances = similarity[movie_index] movies_list = sorted(list(enumerate(distances)), reverse=True, key=lambda x: x[1])[1:6] recommended_movies = [] recommended_movies_posters = [] for i in movies_list: movie_id = movies.iloc[i[0]].movie_id recommended_movies.append(movies.iloc[i[0]].title) recommended_movies_posters.append(fetch_poster(movie_id)) return recommended_movies,recommended_movies_posters movies_dict = pickle.load(open('movies.pkl','rb')) movies = pd.DataFrame(movies_dict) similarity = pickle.load(open('similarity.pkl','rb')) st.title('Movie Recommender System') selected_movie_name = st.selectbox('Name of Movies', movies['title'].values) if st.button('Recommend'): names,posters = recommend(selected_movie_name) col1, col2, col3, col4 ,col5 = st.columns(5) with col1: st.text(names[0]) st.image(posters[0]) with col2: st.text(names[1]) st.image(posters[1]) with col3: st.text(names[2]) st.image(posters[2]) with col4: st.text(names[3]) st.image(posters[3]) with col5: st.text(names[4]) st.image(posters[4])