File size: 16,831 Bytes
0065413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import os
import sys
# to avoid the modified user.pth file
cnhubert_base_path = "GPT_SoVITS\pretrained_models\chinese-hubert-base"
bert_path = "GPT_SoVITS\pretrained_models\chinese-roberta-wwm-ext-large"
os.environ["version"] = 'v2'
now_dir = os.getcwd()
sys.path.insert(0, now_dir)
import gradio as gr
from transformers import AutoModelForMaskedLM, AutoTokenizer
import numpy as np
from pathlib import Path
import os,librosa,torch, audiosegment
from scipy.io.wavfile import write as wavwrite
from GPT_SoVITS.feature_extractor import cnhubert
cnhubert.cnhubert_base_path=cnhubert_base_path
from GPT_SoVITS.module.models import SynthesizerTrn
from GPT_SoVITS.AR.models.t2s_lightning_module import Text2SemanticLightningModule
from GPT_SoVITS.text import cleaned_text_to_sequence
from GPT_SoVITS.text.cleaner import clean_text
from time import time as ttime
from GPT_SoVITS.module.mel_processing import spectrogram_torch
import tempfile
from tools.my_utils import load_audio
import os
import json

################ End strange import and user.pth modification ################

# import pyopenjtalk
# cwd = os.getcwd()
# if os.path.exists(os.path.join(cwd,'user.dic')):
#     pyopenjtalk.update_global_jtalk_with_user_dict(os.path.join(cwd, 'user.dic'))


import logging
logging.getLogger('httpx').setLevel(logging.WARNING)
logging.getLogger('httpcore').setLevel(logging.WARNING)
logging.getLogger('multipart').setLevel(logging.WARNING)

device = "cuda" if torch.cuda.is_available() else "cpu"
#device = "cpu"
is_half = False

tokenizer = AutoTokenizer.from_pretrained(bert_path)
bert_model=AutoModelForMaskedLM.from_pretrained(bert_path)
if(is_half==True):bert_model=bert_model.half().to(device)
else:bert_model=bert_model.to(device)
# bert_model=bert_model.to(device)
def get_bert_feature(text, word2ph): # Bert(不是HuBERT的特征计算)
    with torch.no_grad():
        inputs = tokenizer(text, return_tensors="pt")
        for i in inputs:
            inputs[i] = inputs[i].to(device)#####输入是long不用管精度问题,精度随bert_model
        res = bert_model(**inputs, output_hidden_states=True)
        res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
    assert len(word2ph) == len(text)
    phone_level_feature = []
    for i in range(len(word2ph)):
        repeat_feature = res[i].repeat(word2ph[i], 1)
        phone_level_feature.append(repeat_feature)
    phone_level_feature = torch.cat(phone_level_feature, dim=0)
    # if(is_half==True):phone_level_feature=phone_level_feature.half()
    return phone_level_feature.T

loaded_sovits_model = [] # [(path, dict, model)]
loaded_gpt_model = []
ssl_model = cnhubert.get_model()
if (is_half == True):
    ssl_model = ssl_model.half().to(device)
else:
    ssl_model = ssl_model.to(device)


def load_model(sovits_path, gpt_path):
    global ssl_model
    global loaded_sovits_model
    global loaded_gpt_model
    vq_model = None
    t2s_model = None
    dict_s2 = None
    dict_s1 = None
    hps = None
    for path, dict_s2_, model in loaded_sovits_model:
        if path == sovits_path:
            vq_model = model
            dict_s2 = dict_s2_
            break
    for path, dict_s1_, model in loaded_gpt_model:
        if path == gpt_path:
            t2s_model = model
            dict_s1 = dict_s1_
            break
    
    if dict_s2 is None:
        dict_s2 = torch.load(sovits_path, map_location="cpu")
    hps = dict_s2["config"]

    if dict_s1 is None:
        dict_s1 = torch.load(gpt_path, map_location="cpu")
    config = dict_s1["config"]
    class DictToAttrRecursive:
        def __init__(self, input_dict):
            for key, value in input_dict.items():
                if isinstance(value, dict):
                    # 如果值是字典,递归调用构造函数
                    setattr(self, key, DictToAttrRecursive(value))
                else:
                    setattr(self, key, value)

    hps = DictToAttrRecursive(hps)
    hps.model.semantic_frame_rate = "25hz"


    if not vq_model:
        vq_model = SynthesizerTrn(
            hps.data.filter_length // 2 + 1,
            hps.train.segment_size // hps.data.hop_length,
            n_speakers=hps.data.n_speakers,
            **hps.model)
        if (is_half == True):
            vq_model = vq_model.half().to(device)
        else:
            vq_model = vq_model.to(device)
        vq_model.eval()
        vq_model.load_state_dict(dict_s2["weight"], strict=False)
        loaded_sovits_model.append((sovits_path, dict_s2, vq_model))
    hz = 50
    max_sec = config['data']['max_sec']
    if not t2s_model:
        t2s_model = Text2SemanticLightningModule(config, "ojbk", is_train=False)
        t2s_model.load_state_dict(dict_s1["weight"])
        if (is_half == True): t2s_model = t2s_model.half()
        t2s_model = t2s_model.to(device)
        t2s_model.eval()
        total = sum([param.nelement() for param in t2s_model.parameters()])
        loaded_gpt_model.append((gpt_path, dict_s1, t2s_model))
    return vq_model, ssl_model, t2s_model, hps, config, hz, max_sec


def get_spepc(hps, filename):
    audio=load_audio(filename,int(hps.data.sampling_rate)) 
    audio = audio / np.max(np.abs(audio))
    audio=torch.FloatTensor(audio)
    audio_norm = audio
    # audio_norm = audio / torch.max(torch.abs(audio))
    audio_norm = audio_norm.unsqueeze(0)
    spec = spectrogram_torch(audio_norm, hps.data.filter_length,hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,center=False)
    return spec

def create_tts_fn(vq_model, ssl_model, t2s_model, hps, config, hz, max_sec):
    def tts_fn(ref_wav_path, prompt_text, prompt_language, target_phone, text_language, target_text = None):
        t0 = ttime()
        prompt_text=prompt_text.strip()
        prompt_language=prompt_language
        with torch.no_grad():
            wav16k, sr = librosa.load(ref_wav_path, sr=16000, mono=False)
            direction = np.array([1,1])
            if wav16k.ndim == 2:
                power = np.sum(np.abs(wav16k) ** 2, axis=1)
                direction = power / np.sum(power)
                wav16k = (wav16k[0] + wav16k[1]) / 2
            # 
            # maxx=0.95
            # tmp_max = np.abs(wav16k).max()
            # alpha=0.5
            # wav16k = (wav16k / tmp_max * (maxx * alpha*32768)) + ((1 - alpha)*32768) * wav16k
            #在这里归一化
            #print(max(np.abs(wav16k)))
            #wav16k = wav16k / np.max(np.abs(wav16k))
            #print(max(np.abs(wav16k)))
            # 添加0.3s的静音
            wav16k = np.concatenate([wav16k, np.zeros(int(hps.data.sampling_rate * 0.3)),])
            wav16k = torch.from_numpy(wav16k)
            wav16k = wav16k.float()
            if(is_half==True):wav16k=wav16k.half().to(device)
            else:wav16k=wav16k.to(device)
            ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2)#.float()
            codes = vq_model.extract_latent(ssl_content)
            prompt_semantic = codes[0, 0]
        t1 = ttime()
        phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language)
        phones1=cleaned_text_to_sequence(phones1)
        #texts=text.split("\n")
        audio_opt = []
        zero_wav=np.zeros((2, int(hps.data.sampling_rate*0.3)),dtype=np.float16 if is_half==True else np.float32)
        phones = get_phone_from_str_list(target_phone, text_language)
        for phones2 in phones:
            if(len(phones2) == 0):
                continue
            if(len(phones2) == 1 and phones2[0] == ""):
                continue
            #phones2, word2ph2, norm_text2 = clean_text(text, text_language)
            phones2 = cleaned_text_to_sequence(phones2)
            #if(prompt_language=="zh"):bert1 = get_bert_feature(norm_text1, word2ph1).to(device)
            bert1 = torch.zeros((1024, len(phones1)),dtype=torch.float16 if is_half==True else torch.float32).to(device)
            #if(text_language=="zh"):bert2 = get_bert_feature(norm_text2, word2ph2).to(device)
            bert2 = torch.zeros((1024, len(phones2))).to(bert1)
            bert = torch.cat([bert1, bert2], 1)

            all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0)
            bert = bert.to(device).unsqueeze(0)
            all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
            prompt = prompt_semantic.unsqueeze(0).to(device)
            t2 = ttime()
            idx = 0
            cnt = 0
            while idx == 0 and cnt < 2:
                with torch.no_grad():
                    # pred_semantic = t2s_model.model.infer
                    pred_semantic,idx = t2s_model.model.infer_panel(
                        all_phoneme_ids,
                        all_phoneme_len,
                        prompt,
                        bert,
                        # prompt_phone_len=ph_offset,
                        top_k=config['inference']['top_k'],
                        early_stop_num=hz * max_sec)
                t3 = ttime()
                cnt+=1
            if idx == 0:
                return "Error: Generation failure: bad zero prediction.", None
            pred_semantic = pred_semantic[:,-idx:].unsqueeze(0)  # .unsqueeze(0)#mq要多unsqueeze一次
            refer = get_spepc(hps, ref_wav_path)#.to(device)
            if(is_half==True):refer=refer.half().to(device)
            else:refer=refer.to(device)
            # audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
            audio = vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer).detach().cpu().numpy()[0, 0]###试试重建不带上prompt部分
            # direction乘上,变双通道
            # 强制0.5
            direction = np.array([1, 1])
            audio = np.expand_dims(audio, 0) * direction[:, np.newaxis]
            audio_opt.append(audio)
            audio_opt.append(zero_wav)
            t4 = ttime()

        audio = (hps.data.sampling_rate,(np.concatenate(audio_opt, axis=1)*32768).astype(np.int16).T)
        prefix_1 = prompt_text[:8].replace(" ", "_").replace("\n", "_").replace("?","_").replace("!","_").replace(",","_")
        prefix_2 = target_text[:8].replace(" ", "_").replace("\n", "_").replace("?","_").replace("!","_").replace(",","_")
        filename = tempfile.mktemp(suffix=".wav",prefix=f"{prefix_1}_{prefix_2}_")
        #audiosegment.from_numpy_array(audio[1].T, framerate=audio[0]).export(filename, format="WAV")
        wavwrite(filename, audio[0], audio[1])
        return "Success", audio, filename
    return tts_fn


def get_str_list_from_phone(text, text_language):
    # raw文本过g2p得到音素列表,再转成字符串
    # 注意,这里的text是一个段落,可能包含多个句子
    # 段落间\n分割,音素间空格分割
    print(text)
    texts=text.split("\n")
    phone_list = []
    for text in texts:
        phones2, word2ph2, norm_text2 = clean_text(text, text_language)
        phone_list.append(" ".join(phones2))
    return "\n".join(phone_list)

def get_phone_from_str_list(str_list:str, language:str = 'ja'):
    # 从音素字符串中得到音素列表
    # 注意,这里的text是一个段落,可能包含多个句子
    # 段落间\n分割,音素间空格分割
    sentences = str_list.split("\n")
    phones = []
    for sentence in sentences:
        phones.append(sentence.split(" "))
    return phones

splits={",","。","?","!",",",".","?","!","~",":",":","—","…",}#不考虑省略号
def split(todo_text):
    todo_text = todo_text.replace("……", "。").replace("——", ",")
    if (todo_text[-1] not in splits): todo_text += "。"
    i_split_head = i_split_tail = 0
    len_text = len(todo_text)
    todo_texts = []
    while (1):
        if (i_split_head >= len_text): break  # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
        if (todo_text[i_split_head] in splits):
            i_split_head += 1
            todo_texts.append(todo_text[i_split_tail:i_split_head])
            i_split_tail = i_split_head
        else:
            i_split_head += 1
    return todo_texts


def change_reference_audio(prompt_text, transcripts):
    return transcripts[prompt_text]


models = []
models_info = json.load(open("./models/models_info.json", "r", encoding="utf-8")) 



for i, info in models_info.items():
    title = info['title']
    cover = info['cover']
    gpt_weight = info['gpt_weight']
    sovits_weight = info['sovits_weight']
    example_reference = info['example_reference']
    transcripts = {}
    transcript_path = info["transcript_path"]
    path = os.path.dirname(transcript_path)
    with open(transcript_path, 'r', encoding='utf-8') as file:
        for line in file:
            line = line.strip().replace("\\", "/")
            items = line.split("|")
            wav,t = items[0], items[-1]
            wav = os.path.basename(wav)
            transcripts[t] = os.path.join(os.path.join(path,"reference_audio"), wav)

    vq_model, ssl_model, t2s_model, hps, config, hz, max_sec = load_model(sovits_weight, gpt_weight)


    models.append(
        (
            i,
            title,
            cover,
            transcripts,
            example_reference,
            create_tts_fn(
                vq_model, ssl_model, t2s_model, hps, config, hz, max_sec
            )
        )
    )
with gr.Blocks() as app:
    gr.Markdown(
        "# <center> GPT-SoVITS Demo\n"
    )
    with gr.Tabs():
        for (name, title, cover, transcripts, example_reference, tts_fn) in models:
            with gr.TabItem(name):
                with gr.Row():
                    gr.Markdown(
                        '<div align="center">'
                        f'<a><strong>{title}</strong></a>'
                        '</div>')
                with gr.Row():
                    with gr.Column():
                        prompt_text = gr.Dropdown(
                            label="Transcript of the Reference Audio",
                            value=example_reference if example_reference in transcripts else list(transcripts.keys())[0],
                            choices=list(transcripts.keys())
                        )
                        inp_ref_audio = gr.Audio(
                            label="Reference Audio",
                            type="filepath",
                            interactive=False,
                            value=transcripts[example_reference] if example_reference in transcripts else list(transcripts.values())[0]
                        )
                        transcripts_state = gr.State(value=transcripts)
                        prompt_text.change(
                            fn=change_reference_audio,
                            inputs=[prompt_text, transcripts_state],
                            outputs=[inp_ref_audio]
                        )
                        prompt_language = gr.State(value="ja")
                    with gr.Column():
                        text = gr.Textbox(label="Input Text", value="私はお兄ちゃんのだいだいだーいすきな妹なんだから、言うことなんでも聞いてくれますよね!")
                        text_language = gr.Dropdown(
                            label="Language",
                            choices=["ja"],
                            value="ja"
                        )
                        clean_button = gr.Button("Clean Text", variant="primary")
                        inference_button = gr.Button("Generate", variant="primary")
                        cleaned_text = gr.Textbox(label="Cleaned Text")
                        output = gr.Audio(label="Output Audio")
                        output_file = gr.File(label="Output Audio File")
                        om = gr.Textbox(label="Output Message")
                        clean_button.click(
                            fn=get_str_list_from_phone,
                            inputs=[text, text_language],
                            outputs=[cleaned_text]
                        )
                        inference_button.click(
                            fn=tts_fn,
                            inputs=[inp_ref_audio, prompt_text, prompt_language, cleaned_text, text_language, text],
                            outputs=[om, output, output_file]
                        )

app.launch(share=True)