import io import logging import soundfile import torch import torchaudio from flask import Flask, request, send_file from flask_cors import CORS from inference.infer_tool import Svc, RealTimeVC app = Flask(__name__) CORS(app) logging.getLogger('numba').setLevel(logging.WARNING) @app.route("/voiceChangeModel", methods=["POST"]) def voice_change_model(): request_form = request.form wave_file = request.files.get("sample", None) # pitch changing information f_pitch_change = float(request_form.get("fPitchChange", 0)) # DAW required sampling rate daw_sample = int(float(request_form.get("sampleRate", 0))) speaker_id = int(float(request_form.get("sSpeakId", 0))) # get wav from http and convert input_wav_path = io.BytesIO(wave_file.read()) # inference if raw_infer: # out_audio, out_sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path) out_audio, out_sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path, cluster_infer_ratio=0, auto_predict_f0=False, noice_scale=0.4, f0_filter=False) tar_audio = torchaudio.functional.resample(out_audio, svc_model.target_sample, daw_sample) else: out_audio = svc.process(svc_model, speaker_id, f_pitch_change, input_wav_path, cluster_infer_ratio=0, auto_predict_f0=False, noice_scale=0.4, f0_filter=False) tar_audio = torchaudio.functional.resample(torch.from_numpy(out_audio), svc_model.target_sample, daw_sample) # return out_wav_path = io.BytesIO() soundfile.write(out_wav_path, tar_audio.cpu().numpy(), daw_sample, format="wav") out_wav_path.seek(0) return send_file(out_wav_path, download_name="temp.wav", as_attachment=True) if __name__ == '__main__': # True means splice directly. There may be explosive sounds at the splice. # False means use cross fade. There may be slight overlapping sounds at the splice. # Using 0.3-0.5s in VST plugin can reduce latency. # You can adjust the maximum slicing time of VST plugin to 1 second and set it to ture here to get a stable sound quality and a relatively large delay。 # Choose an acceptable method on your own. raw_infer = True # each model and config are corresponding model_name = "logs/32k/G_174000-Copy1.pth" config_name = "configs/config.json" cluster_model_path = "logs/44k/kmeans_10000.pt" svc_model = Svc(model_name, config_name, cluster_model_path=cluster_model_path) svc = RealTimeVC() # corresponding to the vst plugin here app.run(port=6842, host="0.0.0.0", debug=False, threaded=False)