import gradio as gr import edge_tts import asyncio import librosa import soundfile import io import argparse import numpy as np from inference.infer_tool import Svc def get_or_create_eventloop(): try: return asyncio.get_event_loop() except RuntimeError as ex: if "There is no current event loop in thread" in str(ex): loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) return asyncio.get_event_loop() def tts_get_voices_list(): voices = [] tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices()) for item in tts_voice_list: voices.append(item['ShortName']) return voices def infer(txt, input_audio, voice, audio_mode): tts = asyncio.run(edge_tts.Communicate(txt, voice).save('audio.mp3')) audio, sr = librosa.load('audio.mp3', sr=16000, mono=True) raw_path = io.BytesIO() soundfile.write(raw_path, audio, 16000, format="wav") raw_path.seek(0) model = Svc(fr"Herta-Svc/G_10000.pth", f"Herta-Svc/config.json", device = 'cpu') out_audio, out_sr = model.infer('speaker0', 0, raw_path, auto_predict_f0 = True,) return (44100, out_audio.cpu().numpy()) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--device', type=str, default='cpu') parser.add_argument('--api', action="store_true", default=False) parser.add_argument("--share", action="store_true", default=False, help="share gradio app") args = parser.parse_args() loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) with gr.Blocks() as app: with gr.Tabs(): with gr.TabItem('Herta'): title = gr.Label('Herta Sovits Model') cover = gr.Markdown('
' f'' '
') tts_text = gr.Textbox(label="TTS text (100 words limitation)", visible = True) tts_voice = gr.Dropdown(choices= tts_get_voices_list(), visible = True) audio_output = gr.Audio(label="Output Audio") btn_submit = gr.Button("Generate") btn_submit.click(infer, [tts_text, tts_voice], [audio_output]) app.queue(concurrency_count=1, api_open=args.api).launch(share=args.share)