import logging import multiprocessing import time logging.getLogger('matplotlib').setLevel(logging.WARNING) logging.getLogger('numba').setLevel(logging.WARNING) import os import json import argparse import itertools import math import torch from torch import nn, optim from torch.nn import functional as F from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter import torch.multiprocessing as mp import torch.distributed as dist from torch.nn.parallel import DistributedDataParallel as DDP from torch.cuda.amp import autocast, GradScaler import modules.commons as commons import utils from data_utils import TextAudioSpeakerLoader, TextAudioCollate from models import ( SynthesizerTrn, MultiPeriodDiscriminator, ) from modules.losses import ( kl_loss, generator_loss, discriminator_loss, feature_loss ) from modules.mel_processing import mel_spectrogram_torch, spec_to_mel_torch torch.backends.cudnn.benchmark = True global_step = 0 start_time = time.time() # os.environ['TORCH_DISTRIBUTED_DEBUG'] = 'INFO' def main(): """Assume Single Node Multi GPUs Training Only""" assert torch.cuda.is_available(), "CPU training is not allowed." hps = utils.get_hparams() n_gpus = torch.cuda.device_count() os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = hps.train.port mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,)) def run(rank, n_gpus, hps): global global_step if rank == 0: logger = utils.get_logger(hps.model_dir) logger.info(hps) utils.check_git_hash(hps.model_dir) writer = SummaryWriter(log_dir=hps.model_dir) writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval")) # for pytorch on win, backend use gloo dist.init_process_group(backend= 'gloo' if os.name == 'nt' else 'nccl', init_method='env://', world_size=n_gpus, rank=rank) torch.manual_seed(hps.train.seed) torch.cuda.set_device(rank) collate_fn = TextAudioCollate() all_in_mem = hps.train.all_in_mem # If you have enough memory, turn on this option to avoid disk IO and speed up training. train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps, all_in_mem=all_in_mem) num_workers = 5 if multiprocessing.cpu_count() > 4 else multiprocessing.cpu_count() if all_in_mem: num_workers = 0 train_loader = DataLoader(train_dataset, num_workers=num_workers, shuffle=False, pin_memory=True, batch_size=hps.train.batch_size, collate_fn=collate_fn) if rank == 0: eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps, all_in_mem=all_in_mem) eval_loader = DataLoader(eval_dataset, num_workers=1, shuffle=False, batch_size=1, pin_memory=False, drop_last=False, collate_fn=collate_fn) net_g = SynthesizerTrn( hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, **hps.model).cuda(rank) net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank) optim_g = torch.optim.AdamW( net_g.parameters(), hps.train.learning_rate, betas=hps.train.betas, eps=hps.train.eps) optim_d = torch.optim.AdamW( net_d.parameters(), hps.train.learning_rate, betas=hps.train.betas, eps=hps.train.eps) net_g = DDP(net_g, device_ids=[rank]) # , find_unused_parameters=True) net_d = DDP(net_d, device_ids=[rank]) skip_optimizer = False try: _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g, skip_optimizer) _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d, skip_optimizer) epoch_str = max(epoch_str, 1) name=utils.latest_checkpoint_path(hps.model_dir, "D_*.pth") global_step=int(name[name.rfind("_")+1:name.rfind(".")])+1 #global_step = (epoch_str - 1) * len(train_loader) except: print("load old checkpoint failed...") epoch_str = 1 global_step = 0 if skip_optimizer: epoch_str = 1 global_step = 0 warmup_epoch = hps.train.warmup_epochs scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2) scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2) scaler = GradScaler(enabled=hps.train.fp16_run) for epoch in range(epoch_str, hps.train.epochs + 1): # update learning rate if epoch > 1: scheduler_g.step() scheduler_d.step() # set up warm-up learning rate if epoch <= warmup_epoch: for param_group in optim_g.param_groups: param_group['lr'] = hps.train.learning_rate / warmup_epoch * epoch for param_group in optim_d.param_groups: param_group['lr'] = hps.train.learning_rate / warmup_epoch * epoch # training if rank == 0: train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval]) else: train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, None], None, None) def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers): net_g, net_d = nets optim_g, optim_d = optims scheduler_g, scheduler_d = schedulers train_loader, eval_loader = loaders if writers is not None: writer, writer_eval = writers # train_loader.batch_sampler.set_epoch(epoch) global global_step net_g.train() net_d.train() for batch_idx, items in enumerate(train_loader): c, f0, spec, y, spk, lengths, uv = items g = spk.cuda(rank, non_blocking=True) spec, y = spec.cuda(rank, non_blocking=True), y.cuda(rank, non_blocking=True) c = c.cuda(rank, non_blocking=True) f0 = f0.cuda(rank, non_blocking=True) uv = uv.cuda(rank, non_blocking=True) lengths = lengths.cuda(rank, non_blocking=True) mel = spec_to_mel_torch( spec, hps.data.filter_length, hps.data.n_mel_channels, hps.data.sampling_rate, hps.data.mel_fmin, hps.data.mel_fmax) with autocast(enabled=hps.train.fp16_run): y_hat, ids_slice, z_mask, \ (z, z_p, m_p, logs_p, m_q, logs_q), pred_lf0, norm_lf0, lf0 = net_g(c, f0, uv, spec, g=g, c_lengths=lengths, spec_lengths=lengths) y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length) y_hat_mel = mel_spectrogram_torch( y_hat.squeeze(1), hps.data.filter_length, hps.data.n_mel_channels, hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length, hps.data.mel_fmin, hps.data.mel_fmax ) y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice # Discriminator y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach()) with autocast(enabled=False): loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g) loss_disc_all = loss_disc optim_d.zero_grad() scaler.scale(loss_disc_all).backward() scaler.unscale_(optim_d) grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None) scaler.step(optim_d) with autocast(enabled=hps.train.fp16_run): # Generator y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat) with autocast(enabled=False): loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl loss_fm = feature_loss(fmap_r, fmap_g) loss_gen, losses_gen = generator_loss(y_d_hat_g) loss_lf0 = F.mse_loss(pred_lf0, lf0) loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl + loss_lf0 optim_g.zero_grad() scaler.scale(loss_gen_all).backward() scaler.unscale_(optim_g) grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None) scaler.step(optim_g) scaler.update() if rank == 0: if global_step % hps.train.log_interval == 0: lr = optim_g.param_groups[0]['lr'] losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_kl] reference_loss=0 for i in losses: reference_loss += i logger.info('Train Epoch: {} [{:.0f}%]'.format( epoch, 100. * batch_idx / len(train_loader))) logger.info(f"Losses: {[x.item() for x in losses]}, step: {global_step}, lr: {lr}, reference_loss: {reference_loss}") scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g} scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/kl": loss_kl, "loss/g/lf0": loss_lf0}) # scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)}) # scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)}) # scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)}) image_dict = { "slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()), "slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()), "all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()), "all/lf0": utils.plot_data_to_numpy(lf0[0, 0, :].cpu().numpy(), pred_lf0[0, 0, :].detach().cpu().numpy()), "all/norm_lf0": utils.plot_data_to_numpy(lf0[0, 0, :].cpu().numpy(), norm_lf0[0, 0, :].detach().cpu().numpy()) } utils.summarize( writer=writer, global_step=global_step, images=image_dict, scalars=scalar_dict ) if global_step % hps.train.eval_interval == 0: evaluate(hps, net_g, eval_loader, writer_eval) utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pth".format(global_step))) utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_{}.pth".format(global_step))) keep_ckpts = getattr(hps.train, 'keep_ckpts', 0) if keep_ckpts > 0: utils.clean_checkpoints(path_to_models=hps.model_dir, n_ckpts_to_keep=keep_ckpts, sort_by_time=True) global_step += 1 if rank == 0: global start_time now = time.time() durtaion = format(now - start_time, '.2f') logger.info(f'====> Epoch: {epoch}, cost {durtaion} s') start_time = now def evaluate(hps, generator, eval_loader, writer_eval): generator.eval() image_dict = {} audio_dict = {} with torch.no_grad(): for batch_idx, items in enumerate(eval_loader): c, f0, spec, y, spk, _, uv = items g = spk[:1].cuda(0) spec, y = spec[:1].cuda(0), y[:1].cuda(0) c = c[:1].cuda(0) f0 = f0[:1].cuda(0) uv= uv[:1].cuda(0) mel = spec_to_mel_torch( spec, hps.data.filter_length, hps.data.n_mel_channels, hps.data.sampling_rate, hps.data.mel_fmin, hps.data.mel_fmax) y_hat = generator.module.infer(c, f0, uv, g=g) y_hat_mel = mel_spectrogram_torch( y_hat.squeeze(1).float(), hps.data.filter_length, hps.data.n_mel_channels, hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length, hps.data.mel_fmin, hps.data.mel_fmax ) audio_dict.update({ f"gen/audio_{batch_idx}": y_hat[0], f"gt/audio_{batch_idx}": y[0] }) image_dict.update({ f"gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy()), "gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy()) }) utils.summarize( writer=writer_eval, global_step=global_step, images=image_dict, audios=audio_dict, audio_sampling_rate=hps.data.sampling_rate ) generator.train() if __name__ == "__main__": main()