import gradio as gr import random import os import torch import subprocess import numpy as np from PIL import Image from transformers import AutoProcessor, AutoModelForCausalLM from diffusers import DiffusionPipeline import cv2 from datetime import datetime from fastapi import FastAPI app = FastAPI() #----------Start of theme---------- theme = gr.themes.Soft( primary_hue="zinc", secondary_hue="stone", font=[gr.themes.GoogleFont('Kavivanar'), gr.themes.GoogleFont('Kavivanar'), 'system-ui', 'sans-serif'], font_mono=[gr.themes.GoogleFont('Source Code Pro'), gr.themes.GoogleFont('Inconsolata'), gr.themes.GoogleFont('Inconsolata'), 'monospace'], ).set( body_background_fill='*primary_100', body_text_color='secondary_600', body_text_color_subdued='*primary_500', body_text_weight='500', background_fill_primary='*primary_100', background_fill_secondary='*secondary_200', color_accent='*primary_300', border_color_accent_subdued='*primary_400', border_color_primary='*primary_400', block_background_fill='*primary_300', block_border_width='*panel_border_width', block_info_text_color='*primary_700', block_info_text_size='*text_md', panel_background_fill='*primary_200', accordion_text_color='*primary_600', table_text_color='*primary_600', input_background_fill='*primary_50', input_background_fill_focus='*primary_100', button_primary_background_fill='*primary_500', button_primary_background_fill_hover='*primary_400', button_primary_text_color='*primary_50', button_primary_text_color_hover='*primary_100', button_cancel_background_fill='*primary_500', button_cancel_background_fill_hover='*primary_400' ) #----------End of theme---------- def flip_image(x): return np.fliplr(x) def basic_filter(image, filter_type): """Apply basic image filters""" if filter_type == "Gray Toning": return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) elif filter_type == "Sepia": sepia_filter = np.array([ [0.272, 0.534, 0.131], [0.349, 0.686, 0.168], [0.393, 0.769, 0.189] ]) return cv2.transform(image, sepia_filter) elif filter_type == "X-ray": # Improved X-ray effect gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) inverted = cv2.bitwise_not(gray) # Increase contrast clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8)) enhanced = clahe.apply(inverted) # Sharpen kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]]) sharpened = cv2.filter2D(enhanced, -1, kernel) return cv2.cvtColor(sharpened, cv2.COLOR_GRAY2BGR) elif filter_type == "Burn it": return cv2.GaussianBlur(image, (15, 15), 0) def classic_filter(image, filter_type): """Classical display filters""" if filter_type == "Charcoal Effect": gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) inverted = cv2.bitwise_not(gray) blurred = cv2.GaussianBlur(inverted, (21, 21), 0) sketch = cv2.divide(gray, cv2.subtract(255, blurred), scale=256) return cv2.cvtColor(sketch, cv2.COLOR_GRAY2BGR) elif filter_type == "Sharpen": kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]]) return cv2.filter2D(image, -1, kernel) elif filter_type == "Embossing": kernel = np.array([[0,-1,-1], [1,0,-1], [1,1,0]]) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) emboss = cv2.filter2D(gray, -1, kernel) + 128 return cv2.cvtColor(emboss, cv2.COLOR_GRAY2BGR) elif filter_type == "Edge Detection": edges = cv2.Canny(image, 100, 200) return cv2.cvtColor(edges, cv2.COLOR_GRAY2BGR) def creative_filters(image, filter_type): """Creative and unusual image filters""" if filter_type == "Pixel Art": h, w = image.shape[:2] piksel_size = 20 small = cv2.resize(image, (w//piksel_size, h//piksel_size)) return cv2.resize(small, (w, h), interpolation=cv2.INTER_NEAREST) elif filter_type == "Mosaic Effect": h, w = image.shape[:2] mosaic_size = 30 for i in range(0, h, mosaic_size): for j in range(0, w, mosaic_size): roi = image[i:i+mosaic_size, j:j+mosaic_size] if roi.size > 0: color = np.mean(roi, axis=(0,1)) image[i:i+mosaic_size, j:j+mosaic_size] = color return image elif filter_type == "Rainbow": hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) h, w = image.shape[:2] for i in range(h): hsv[i, :, 0] = (hsv[i, :, 0] + i % 180).astype(np.uint8) return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) elif filter_type == "Night Vision": green_image = image.copy() green_image[:,:,0] = 0 # Blue channel green_image[:,:,2] = 0 # Red channel return cv2.addWeighted(green_image, 1.5, np.zeros(image.shape, image.dtype), 0, -50) def special_effects(image, filter_type): """Apply special effects""" if filter_type == "Matrix Effect": green_matrix = np.zeros_like(image) green_matrix[:,:,1] = image[:,:,1] # Only green channel random_brightness = np.random.randint(0, 255, size=image.shape[:2]) green_matrix[:,:,1] = np.minimum(green_matrix[:,:,1] + random_brightness, 255) return green_matrix elif filter_type == "Wave Effect": rows, cols = image.shape[:2] img_output = np.zeros(image.shape, dtype=image.dtype) for i in range(rows): for j in range(cols): offset_x = int(25.0 * np.sin(2 * 3.14 * i / 180)) offset_y = int(25.0 * np.cos(2 * 3.14 * j / 180)) if i+offset_x < rows and j+offset_y < cols: img_output[i,j] = image[(i+offset_x)%rows,(j+offset_y)%cols] else: img_output[i,j] = 0 return img_output elif filter_type == "Time Stamp": output = image.copy() timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") font = cv2.FONT_HERSHEY_SIMPLEX cv2.putText(output, timestamp, (10, 30), font, 1, (255, 255, 255), 2) return output elif filter_type == "Glitch Effect": glitch = image.copy() h, w = image.shape[:2] for _ in range(10): x1 = random.randint(0, w-50) y1 = random.randint(0, h-50) x2 = random.randint(x1, min(x1+50, w)) y2 = random.randint(y1, min(y1+50, h)) glitch[y1:y2, x1:x2] = np.roll(glitch[y1:y2, x1:x2], random.randint(-20, 20), axis=random.randint(0, 1)) return glitch def artistic_filters(image, filter_type): """Applies artistic image filters""" if filter_type == "Pop Art": img_small = cv2.resize(image, None, fx=0.5, fy=0.5) img_color = cv2.resize(img_small, (image.shape[1], image.shape[0])) for _ in range(2): img_color = cv2.bilateralFilter(img_color, 9, 300, 300) hsv = cv2.cvtColor(img_color, cv2.COLOR_BGR2HSV) hsv[:,:,1] = hsv[:,:,1]*1.5 return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) elif filter_type == "Oil Paint": ret = np.float32(image.copy()) ret = cv2.bilateralFilter(ret, 9, 75, 75) ret = cv2.detailEnhance(ret, sigma_s=15, sigma_r=0.15) ret = cv2.edgePreservingFilter(ret, flags=1, sigma_s=60, sigma_r=0.4) return np.uint8(ret) elif filter_type == "Cartoon": # Improved cartoon effect color = image.copy() gray = cv2.cvtColor(color, cv2.COLOR_BGR2GRAY) gray = cv2.medianBlur(gray, 5) edges = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 9) color = cv2.bilateralFilter(color, 9, 300, 300) cartoon = cv2.bitwise_and(color, color, mask=edges) # Increase color saturation hsv = cv2.cvtColor(cartoon, cv2.COLOR_BGR2HSV) hsv[:,:,1] = hsv[:,:,1]*1.4 # saturation increase return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) def atmospheric_filters(image, filter_type): """atmospheric filters""" if filter_type == "Autumn": # Genhanced autumn effect autumn_filter = np.array([ [0.393, 0.769, 0.189], [0.349, 0.686, 0.168], [0.272, 0.534, 0.131] ]) autumn = cv2.transform(image, autumn_filter) # Increase color temperature hsv = cv2.cvtColor(autumn, cv2.COLOR_BGR2HSV) hsv[:,:,0] = hsv[:,:,0]*0.8 # Shift to orange/yellow tones hsv[:,:,1] = hsv[:,:,1]*1.2 # Increase saturation return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) elif filter_type == "Nostalgia": # Improved nostalgia effect # Reduce contrast and add yellowish tone image = cv2.convertScaleAbs(image, alpha=0.9, beta=10) sepia = cv2.transform(image, np.array([ [0.393, 0.769, 0.189], [0.349, 0.686, 0.168], [0.272, 0.534, 0.131] ])) # Darkening effect in corners h, w = image.shape[:2] kernel = np.zeros((h, w)) center = (h//2, w//2) for i in range(h): for j in range(w): dist = np.sqrt((i-center[0])**2 + (j-center[1])**2) kernel[i,j] = 1 - min(1, dist/(np.sqrt(h**2 + w**2)/2)) kernel = np.dstack([kernel]*3) return cv2.multiply(sepia, kernel).astype(np.uint8) elif filter_type == "Increase Brightness": # Improved brightness boost hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) # Increase brightness hsv[:,:,2] = cv2.convertScaleAbs(hsv[:,:,2], alpha=1.2, beta=30) # Also increase the contrast slightly return cv2.convertScaleAbs(cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR), alpha=1.1, beta=0) def image_processing(image, filter_type): """Main image processing function""" if image is None: return None image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # Process by filter categories basic_filter_list = ["Gray Toning", "Sepia", "X-ray", "Burn it"] classic_filter_list = ["Charcoal Effect", "Sharpen", "Embossing", "Edge Detection"] creative_filters_list = ["Rainbow", "Night Vision"] special_effects_list = ["Matrix Effect", "Wave Effect", "Time Stamp", "Glitch Effect"] artistic_filters_list = ["Pop Art", "Oil Paint", "Cartoon"] atmospheric_filters_list = ["Autumn", "Increase Brightness"] if filter_type in basic_filter_list: output = basic_filter(image, filter_type) elif filter_type in classic_filter_list: output = classic_filter(image, filter_type) elif filter_type in creative_filters_list: output = creative_filters(image, filter_type) elif filter_type in special_effects_list: output = special_effects(image, filter_type) elif filter_type in artistic_filters_list: output = artistic_filters(image, filter_type) elif filter_type in atmospheric_filters_list: output = atmospheric_filters(image, filter_type) else: output = image return cv2.cvtColor(output, cv2.COLOR_BGR2RGB) if len(output.shape) == 3 else output css = """ #app-container { max-width: 1200px; margin-left: auto; margin-right: auto; } """ # Gradio interface with gr.Blocks(theme=theme, css=css) as app: gr.HTML("
🎨 Image Studio
") with gr.Tab("Image to Prompt"): subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) # Initialize Florence model device = "cuda" if torch.cuda.is_available() else "cpu" florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval() florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True) # api_key = os.getenv("HF_READ_TOKEN") def generate_caption(image): if not isinstance(image, Image.Image): image = Image.fromarray(image) inputs = florence_processor(text="", images=image, return_tensors="pt").to(device) generated_ids = florence_model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, early_stopping=False, do_sample=False, num_beams=3, ) generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = florence_processor.post_process_generation( generated_text, task="", image_size=(image.width, image.height) ) prompt = parsed_answer[""] print("\n\nGeneration completed!:"+ prompt) return prompt io = gr.Interface(generate_caption, inputs=[gr.Image(label="Input Image")], outputs = [gr.Textbox(label="Output Prompt", lines=2, show_copy_button = True), # gr.Image(label="Output Image") ] ) with gr.Tab("Text to Image"): gr.HTML("
ℹ️ Please do not run the models at the same time, the models are currently running on the CPU, which might affect performance.
") with gr.Accordion("Flux-RealismLora", open=False): model1 = gr.load("models/XLabs-AI/flux-RealismLora") with gr.Accordion("Flux--schnell-realism", open=False): model2 = gr.load("models/hugovntr/flux-schnell-realism") with gr.Accordion("Flux--schnell-LoRA", open=False): model3 = gr.load("models/Octree/flux-schnell-lora") with gr.Tab("Flip Image"): with gr.Row(): image_input = gr.Image(type="numpy", label="Upload Image") image_output = gr.Image(format="png") with gr.Row(): image_button = gr.Button("Run", variant='primary') image_button.click(flip_image, inputs=image_input, outputs=image_output) with gr.Tab("Image Filters"): with gr.Row(): with gr.Column(): image_input = gr.Image(type="numpy", label="Upload Image") with gr.Accordion("ℹ️ Filter Categories", open=True): filter_type = gr.Dropdown( [ # Basic Filters "Gray Toning", "Sepia", "X-ray", "Burn it", # Classic Filter "Charcoal Effect", "Sharpen", "Embossing", "Edge Detection", # Creative Filters "Rainbow", "Night Vision", # Special Effects "Matrix Effect", "Wave Effect", "Time Stamp", "Glitch Effect", # Artistic Filters "Pop Art", "Oil Paint", "Cartoon", # Atmospheric Filters "Autumn", "Increase Brightness" ], label="🎭 Select Filter", info="Choose the effect you want" ) submit_button = gr.Button("✨ Apply Filter", variant="primary") with gr.Column(): image_output = gr.Image(label="🖼️ Filtered Image") submit_button.click( image_processing, inputs=[image_input, filter_type], outputs=image_output ) with gr.Tab("Image Upscaler"): with gr.Row(): with gr.Column(): def upscale_image(input_image, radio_input): upscale_factor = radio_input output_image = cv2.resize(input_image, None, fx = upscale_factor, fy = upscale_factor, interpolation = cv2.INTER_CUBIC) return output_image radio_input = gr.Radio(label="Upscale Levels", choices=[2, 4, 6, 8, 10], value=2) iface = gr.Interface(fn=upscale_image, inputs = [gr.Image(label="Input Image", interactive=True), radio_input], outputs = gr.Image(label="Upscaled Image", format="png"), title="Image Upscaler") app.launch(share=True)