import pandas as pd from datasets import Dataset from nltk.translate.bleu_score import sentence_bleu from ragas import evaluate from ragas.metrics import ( answer_relevancy, answer_correctness, ) from rouge_score import rouge_scorer from sentence_transformers import SentenceTransformer, util from .utils_evaluate_objections import generate_objection_score async def evaluate_objections(session): print("evaluate_objections()") for response in session.responses: question = response.get("question", "") answer = response.get("response", "") print(f"Question: {question}") print(f"Answer: {answer}") q_and_a = { "objection": question, "answer": answer } print(q_and_a) score = await generate_objection_score(q_and_a) print(score) response["evaluation_score"] = score def evaluate_answers(session): ragas_results = evaluate_with_ragas(session) session.ragas_results = ragas_results scores = [] for response in session.responses: bleu_score = calculate_bleu_score(response.get("response", ""), response.get("ground_truth", "")) rouge_score = calculate_rouge_score(response.get("response", ""), response.get("ground_truth", "")) semantic_similarity_score = calculate_semantic_similarity(response.get("response", ""), response.get("ground_truth", "")) all_scores = { "bleu_score": bleu_score, "rouge_score": rouge_score, "semantic_similarity_score": semantic_similarity_score } scores.append(all_scores) session.scores = scores return scores def evaluate_with_ragas(session): questions = [] answers = [] ground_truths = [] contexts = [] for i, response in enumerate(session.responses, 1): questions.append(response.get("question", "")) answers.append(response.get("response", "")) ground_truths.append(response.get("ground_truth", "")) contexts.append([session.company.product_description]) evaluation_dataset = Dataset.from_dict({ "question" : questions, "answer" : answers, "contexts" : contexts, "ground_truth" : ground_truths }) print(evaluation_dataset) metrics = [ # faithfulness, answer_relevancy, # context_recall, # context_precision, answer_correctness, ] results = evaluate(evaluation_dataset, metrics) print(results) return results def calculate_bleu_score(answer, ground_truth): bleu_score = sentence_bleu([ground_truth.split()], answer.split()) print(f"BLEU score: {bleu_score}") return bleu_score def calculate_rouge_score(answer, ground_truth): scorer = rouge_scorer.RougeScorer(['rouge1', 'rougeL'], use_stemmer=True) rouge_scores = scorer.score(ground_truth, answer) print(f"ROUGE score: {rouge_scores}") return rouge_scores def calculate_semantic_similarity(answer, ground_truth): model = SentenceTransformer('all-MiniLM-L6-v2') answer_embedding = model.encode(answer) ground_truth_embedding = model.encode(ground_truth) similarity_score = util.cos_sim(answer_embedding, ground_truth_embedding) print(f"Semantic Similarity: {similarity_score.item()}") return similarity_score.item()