#!/usr/bin/env python # -*- coding: UTF-8 -*- ''' @Project :Waveformer-main @File :CLAPsep_decoder.py @IDE :PyCharm @Author :Aisaka/Hao Ma @SDU @Date :2023/10/31 下午8:34 ''' from laion_clap.clap_module.htsat import * from einops import rearrange import numpy as np class Transpose(nn.Module): def __init__(self, dim0, dim1): super(Transpose, self).__init__() self.dim0 = dim0 self.dim1 = dim1 def forward(self, x): return x.transpose(self.dim0, self.dim1) class Swish(nn.Module): def __init__(self): super(Swish, self).__init__() def forward(self, x): return x * x.sigmoid() class Glu(nn.Module): def __init__(self, dim): super(Glu, self).__init__() self.dim = dim def forward(self, x): x_in, x_gate = x.chunk(2, dim=self.dim) return x_in * x_gate.sigmoid() class FiLM(nn.Module): def __init__(self, dim_in=1024, hidden_dim=768): super(FiLM, self).__init__() self.beta = nn.Linear(dim_in, hidden_dim) self.gamma = nn.Linear(dim_in, hidden_dim) def forward(self, hidden_state, embed): embed = embed.unsqueeze(1) return self.gamma(embed) * hidden_state + self.beta(embed) class SkipTrans(nn.Module): def __init__(self, in_features, out_features, embed_dim=512, film=True): super(SkipTrans, self).__init__() self.film = film if film: self.skip_conv = FiLM(embed_dim, out_features) self.feature_proj = nn.Linear(in_features, out_features) self.norm = nn.LayerNorm(out_features) def forward(self, skip, embed, x=None): out = self.feature_proj(skip) if self.film: out = self.skip_conv(out, embed) return self.norm(out) if x is None else self.norm(out + x) class Conv1d(nn.Conv1d): def __init__( self, in_channels, out_channels, kernel_size, stride = 1, padding = "same", dilation = 1, groups = 1, bias = True ): super(Conv1d, self).__init__( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=0, dilation=dilation, groups=groups, bias=bias, padding_mode="zeros") # Assert assert padding in ["valid", "same", "causal"] # Padding if padding == "valid": self.pre_padding = None elif padding == "same": self.pre_padding = nn.ConstantPad1d(padding=((kernel_size - 1) // 2, (kernel_size - 1) // 2), value=0) elif padding == "causal": self.pre_padding = nn.ConstantPad1d(padding=(kernel_size - 1, 0), value=0) # Variational Noise self.noise = None self.vn_std = None def init_vn(self, vn_std): # Variational Noise self.vn_std = vn_std def sample_synaptic_noise(self, distributed): # Sample Noise self.noise = torch.normal(mean=0.0, std=1.0, size=self.weight.size(), device=self.weight.device, dtype=self.weight.dtype) # Broadcast Noise if distributed: torch.distributed.broadcast(self.noise, 0) def forward(self, input): # Weight weight = self.weight # Add Noise if self.noise is not None and self.training: weight = weight + self.vn_std * self.noise # Padding if self.pre_padding is not None: input = self.pre_padding(input) # Apply Weight return F.conv1d(input, weight, self.bias, self.stride, self.padding, self.dilation, self.groups) class ConvolutionModule(nn.Module): """Conformer Convolution Module Args: dim_model: input feature dimension dim_expand: output feature dimension kernel_size: 1D depthwise convolution kernel size Pdrop: residual dropout probability stride: 1D depthwise convolution stride padding: "valid", "same" or "causal" Input: (batch size, input length, dim_model) Output: (batch size, output length, dim_expand) """ def __init__(self, dim_model, dim_expand, kernel_size, Pdrop, stride, padding): super(ConvolutionModule, self).__init__() # Layers self.layers = nn.Sequential( nn.LayerNorm(dim_model, eps=1e-6), Transpose(1, 2), Conv1d(dim_model, 2 * dim_expand, kernel_size=1), Glu(dim=1), Conv1d(dim_expand, dim_expand, kernel_size, stride=stride, padding=padding, groups=dim_expand), nn.BatchNorm1d(dim_expand), Swish(), Conv1d(dim_expand, dim_expand, kernel_size=1), Transpose(1, 2), nn.Dropout(p=Pdrop) ) self.ln = nn.LayerNorm(dim_expand) def forward(self, x): return self.ln(self.layers(x)+x) class BasicLayerDec(nn.Module): """ A basic Swin Transformer layer for one stage. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. depth (int): Number of blocks. num_heads (int): Number of attention heads. window_size (int): Local window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. """ def __init__(self, dim, input_resolution, depth, num_heads, window_size, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False, norm_before_mlp='ln'): super().__init__() self.dim = dim self.input_resolution = input_resolution self.depth = depth self.use_checkpoint = use_checkpoint # build blocks self.blocks = nn.ModuleList([ SwinTransformerBlock(dim=dim, input_resolution=input_resolution, num_heads=num_heads, window_size=window_size, shift_size=0 if (i % 2 == 0) else window_size // 2, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer, norm_before_mlp=norm_before_mlp) for i in range(depth)]) # patch merging layer if downsample is not None: self.downsample = downsample((input_resolution[0]//2, input_resolution[1]//2), dim=dim * 2, norm_layer=norm_layer) else: self.downsample = None def forward(self, x): attns = [] if self.downsample is not None: x = self.downsample(x) for blk in self.blocks: if self.use_checkpoint: x = checkpoint.checkpoint(blk, x) else: x, attn = blk(x) if not self.training: attns.append(attn.unsqueeze(0)) if not self.training: attn = torch.cat(attns, dim = 0) attn = torch.mean(attn, dim = 0) return x, attn def extra_repr(self): return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" class PatchExpand(nn.Module): def __init__(self, input_resolution, dim, dim_scale=2, norm_layer=nn.LayerNorm): super().__init__() self.input_resolution = input_resolution self.dim = dim self.expand = nn.Linear(dim, 2 * dim, bias=False) if dim_scale == 2 else nn.Identity() self.norm = norm_layer(dim // dim_scale) def forward(self, x): """ x: B, H*W, C """ H, W = self.input_resolution x = self.expand(x) B, L, C = x.shape assert L == H * W, "input feature has wrong size" x = x.view(B, H, W, C) # This is the original implementation in SwinUnet # x = rearrange(x, 'b h w (p1 p2 c)-> b (h p1) (w p2) c', p1=2, p2=2, c=C // 4) # here is our implementation # can reverse patch-emerging in Swin-Transformer encoder, seems helpful x0, x2, x1, x3 = x.chunk(4, dim=-1) x = torch.stack((x0, x1, x2, x3), dim=-1) x = torch.chunk(x, C // 4, dim=-2) x = torch.concat(x, dim=-1).squeeze(-2) x = rearrange(x, 'b h w c -> b c h w') x = torch.nn.functional.pixel_shuffle(x, 2) x = rearrange(x, 'b c h w -> b h w c') x = x.view(B, -1, C // 4) x = self.norm(x) return x class InversePatchEmbed(nn.Module): """ Patch Embedding to 2D Image. """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True, patch_stride=16): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) patch_stride = to_2tuple(patch_stride) self.img_size = img_size self.patch_size = patch_size self.patch_stride = patch_stride self.grid_size = (img_size[0] // patch_stride[0], img_size[1] // patch_stride[1]) self.num_patches = self.grid_size[0] * self.grid_size[1] self.flatten = flatten self.in_chans = in_chans self.embed_dim = embed_dim padding = ((patch_size[0] - patch_stride[0]) // 2, (patch_size[1] - patch_stride[1]) // 2) self.proj = nn.ConvTranspose2d(embed_dim, in_chans, kernel_size=patch_size, stride=patch_stride, padding=padding) self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() def forward(self, x): # B, C, H, W = x.shape # assert H == self.img_size[0] and W == self.img_size[1], \ # f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.norm(x) if self.flatten: # x = x.flatten(2).transpose(1, 2) # BCHW -> BNC x = x.transpose(1, 2).unflatten(2, self.grid_size).contiguous() # BNC -> BCHW x = self.proj(x) return x class HTSAT_Decoder(nn.Module): r"""HTSAT_decoder based on the Swin Transformer Args: spec_size (int | tuple(int)): Input Spectrogram size. Default 256 patch_size (int | tuple(int)): Patch size. Default: 4 path_stride (iot | tuple(int)): Patch Stride for Frequency and Time Axis. Default: 4 in_chans (int): Number of input image channels. Default: 1 (mono) num_classes (int): Number of classes for classification head. Default: 527 embed_dim (int): Patch embedding dimension. Default: 96 depths (tuple(int)): Depth of each HTSAT-Swin Transformer layer. num_heads (tuple(int)): Number of attention heads in different layers. window_size (int): Window size. Default: 8 mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None drop_rate (float): Dropout rate. Default: 0 attn_drop_rate (float): Attention dropout rate. Default: 0 drop_path_rate (float): Stochastic depth rate. Default: 0.1 norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. ape (bool): If True, add absolute position embedding to the patch embedding. Default: False patch_norm (bool): If True, add normalization after patch embedding. Default: True use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False """ def __init__(self, lan_embed_dim=512, spec_size=256, patch_size=4, patch_stride=(4, 4), in_chans=1, num_classes=527, embed_dim=48, depths=[1, 1, 1, 1], num_heads=[4, 8, 16, 32], window_size=8, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, use_checkpoint=False, norm_before_mlp='ln', encoder_embed_dim=96, phase=False, spec_factor=8, d_attn=640, n_masker_layer=4, conv=False): super(HTSAT_Decoder, self).__init__() self.mel_bins = 64 self.spec_size = spec_size self.phase = phase self.patch_stride = patch_stride self.patch_size = patch_size self.window_size = window_size self.embed_dim = embed_dim self.depths = depths self.ape = ape self.in_chans = in_chans self.num_classes = num_classes self.num_heads = num_heads self.num_layers = len(self.depths) self.num_features = int(self.embed_dim * 2 ** (self.num_layers - 1)) self.drop_rate = drop_rate self.attn_drop_rate = attn_drop_rate self.drop_path_rate = drop_path_rate self.qkv_bias = qkv_bias self.qk_scale = None self.patch_norm = patch_norm self.norm_layer = norm_layer if self.patch_norm else None self.norm_before_mlp = norm_before_mlp self.mlp_ratio = mlp_ratio self.use_checkpoint = use_checkpoint # process mel-spec ; used only once self.freq_ratio = self.spec_size // self.mel_bins # split spctrogram into non-overlapping patches self.inverse_patch_embed = InversePatchEmbed( img_size=self.spec_size, patch_size=self.patch_size, in_chans=self.in_chans, embed_dim=self.embed_dim, norm_layer=self.norm_layer, patch_stride=patch_stride) patches_resolution = self.inverse_patch_embed.grid_size self.patches_resolution = patches_resolution # stochastic depth dpr = [x.item() for x in torch.linspace(0, self.drop_path_rate, sum(self.depths))] # stochastic depth decay rule # build layers self.layers = nn.ModuleList() self.skip = nn.ModuleList() for i_layer in range(self.num_layers): layer = BasicLayerDec(dim=int(self.embed_dim * 2 ** i_layer), input_resolution=(patches_resolution[0] // (2 ** i_layer), patches_resolution[1] // (2 ** i_layer)), depth=self.depths[i_layer], num_heads=self.num_heads[i_layer], window_size=self.window_size, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, qk_scale=self.qk_scale, drop=self.drop_rate, attn_drop=self.attn_drop_rate, drop_path=dpr[sum(self.depths[:i_layer]):sum(self.depths[:i_layer + 1])], norm_layer=self.norm_layer, downsample=PatchExpand if (i_layer < self.num_layers - 1) else None, use_checkpoint=use_checkpoint, norm_before_mlp=self.norm_before_mlp) self.layers.append(layer) self.skip.append( SkipTrans(embed_dim=lan_embed_dim, in_features=int(encoder_embed_dim * 2 ** i_layer), out_features=int(self.embed_dim * 2 ** i_layer)), ) self.layers = self.layers[::-1] self.skip = self.skip[::-1] # self.skip.append( # SkipTrans(embed_dim=lan_embed_dim, in_features=self.mel_bins, out_features=self.mel_bins), # ) d_spec = self.mel_bins * spec_factor + 1 self.spec_norm = nn.BatchNorm2d(d_spec, momentum=0.01) self.conv = conv if not conv: encoder_layer = nn.TransformerEncoderLayer(d_model=d_attn, nhead=8, dim_feedforward=int(d_attn * self.mlp_ratio), batch_first=True, dropout=0) transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=n_masker_layer) self.mask_net = nn.Sequential( nn.Linear(self.mel_bins + d_spec, d_attn), nn.LayerNorm(d_attn), transformer_encoder, nn.Linear(d_attn, d_spec) ) else: self.mask_net = nn.Sequential( nn.Linear(self.mel_bins + d_spec, d_spec), nn.LayerNorm(d_spec), *[ConvolutionModule(dim_model=d_spec, dim_expand=d_spec, kernel_size=9, padding='same', Pdrop=0, stride=1) for i in range(n_masker_layer)] ) if self.phase: self.phase_net = nn.Sequential( nn.Linear(self.mel_bins + d_spec, d_spec * 2), nn.LayerNorm(d_spec * 2), *[ConvolutionModule(dim_model=d_spec * 2, dim_expand=d_spec * 2, kernel_size=9, padding='same', Pdrop=0, stride=1) for i in range(n_masker_layer)] ) self.film = SkipTrans(embed_dim=lan_embed_dim, in_features=encoder_embed_dim * 8, out_features=self.num_features) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) # @torch.jit.ignore # def no_weight_decay(self): # return {'absolute_pos_embed'} # # @torch.jit.ignore # def no_weight_decay_keywords(self): # return {'relative_position_bias_table'} def forward(self, hidden_state, skip_features, embed): skip_features = skip_features[::-1] # hidden_state = torch.randn(hidden_state.shape).type_as(hidden_state) spec = skip_features[-1] h = self.film(hidden_state, embed) for i, (layer, f, skip) in enumerate(zip(self.layers, skip_features, self.skip)): h = layer(h)[0] h = skip(skip=f, embed=embed, x=h) h = self.reshape_img2wav(self.inverse_patch_embed(h)).squeeze(1) h = h[:, :spec.size(2), :] spec = spec.transpose(1, 3) spec = self.spec_norm(spec).transpose(1, 3).squeeze(1) h = torch.concat([spec, h], dim=-1) mask = self.mask_net(h).unsqueeze(1) if self.phase: mask_r, mask_i = torch.chunk(self.phase_net(h).unsqueeze(1), chunks=2, dim=-1) return torch.sigmoid(mask), torch.tanh(mask_r), torch.tanh(mask_i) else: return torch.sigmoid(mask) def reshape_img2wav(self, x): # (B, 1, 256, 256) x = x.reshape(x.shape[0], x.shape[1], self.freq_ratio, x.shape[2]//self.freq_ratio, x.shape[3]) # (B, 1, 4, 64, 256) x = x.permute(0, 1, 3, 2, 4).contiguous() x = x.reshape(x.shape[0], x.shape[1], x.shape[2], x.shape[3] * x.shape[4]) x = x.permute(0, 1, 3, 2).contiguous() return x # if __name__ == "__main__": # import torch # from msclap import CLAP # import os # import torchaudio # import torchaudio.transforms as T # import numpy as np # import random # from torchlibrosa import Spectrogram, LogmelFilterBank # clap_model = CLAP(model_fp="/home/user/202212661/clapsep/Waveformer-main/checkpoint_path/CLAP_weights_2023.pth", # version='2023', use_cuda=True) # text_data = [ # "Acoustic_guitar", "Applause", "Bark", "Bass_drum", "Burping_or_eructation", # "Bus", "Cello", "Chime", "Clarinet", "Computer_keyboard", # "Cough", "Cowbell", "Double_bass", "Drawer_open_or_close", "Electric_piano", # "Fart", "Finger_snapping", "Fireworks", "Flute", "Glockenspiel", # "Gong", "Gunshot_or_gunfire", "Harmonica", "Hi-hat", "Keys_jangling", # "Knock", "Laughter", "Meow", "Microwave_oven", "Oboe", # "Saxophone", "Scissors", "Shatter", "Snare_drum", "Squeak", # "Tambourine", "Tearing", "Telephone", "Trumpet", "Violin_or_fiddle", # "Writing"] # # Extract text embeddings # text_embeddings = clap_model.get_text_embeddings(text_data) # path = "/home/user/202212661/clapsep/Waveformer-main/data/FSDSoundScapes/FSDKaggle2018/train/Tearing/2232ce13.wav" # # Extract audio embeddings # audio_embeddings_ = clap_model.get_audio_embeddings([path]) # # window = 'hann' # center = True # pad_mode = 'reflect' # ref = 1.0 # amin = 1e-10 # top_db = None # # spectrogram_extractor = Spectrogram(n_fft=512, hop_length=160, # win_length=512, window=window, center=center, pad_mode=pad_mode, # freeze_parameters=True).cuda() # # Logmel feature extractor # logmel_extractor = LogmelFilterBank(sr=16000, n_fft=512, # n_mels=64, fmin=0, fmax=8000, ref=ref, amin=amin, # top_db=top_db, # freeze_parameters=True).cuda() # # clap_model.clap.audio_encoder.base.htsat.spectrogram_extractor = spectrogram_extractor # clap_model.clap.audio_encoder.base.htsat.logmel_extractor = logmel_extractor # # features = [] # # # def get_features_list(module, input, output): # features.append(output) # # # def get_features_list_basic_layer(module, input, output): # features.append(output[0]) # # # clap_model.clap.audio_encoder.base.htsat.patch_embed.register_forward_hook(get_features_list) # for module in clap_model.clap.audio_encoder.base.htsat.layers: # module.register_forward_hook(get_features_list_basic_layer) # # audio_time_series, sample_rate = torchaudio.load(path) # resample_rate = 16000 # if resample_rate != sample_rate: # resampler = T.Resample(sample_rate, resample_rate) # audio_time_series = resampler(audio_time_series) # # sample_rate = resample_rate # audio_duration = 10 # audio_time_series = audio_time_series.reshape(-1) # if audio_duration * sample_rate >= audio_time_series.shape[0]: # repeat_factor = int(np.ceil((audio_duration * sample_rate) / # audio_time_series.shape[0])) # # Repeat audio_time_series by repeat_factor to match audio_duration # audio_time_series = audio_time_series.repeat(repeat_factor) # # remove excess part of audio_time_series # audio_time_series = audio_time_series[0:audio_duration * sample_rate] # else: # # audio_time_series is longer than predefined audio duration, # # so audio_time_series is trimmed # start_index = random.randrange( # audio_time_series.shape[0] - audio_duration * sample_rate) # audio_time_series = audio_time_series[start_index:start_index + # audio_duration * sample_rate] #