File size: 9,482 Bytes
df103d9
d2c9b66
64df041
d2c9b66
 
 
 
 
ffc2074
9f51691
52fdd94
 
df103d9
 
89aa5ab
d2c9b66
 
 
89aa5ab
d2c9b66
89aa5ab
d2c9b66
 
 
 
 
 
 
 
78f31af
 
 
 
af13ace
d2c9b66
 
 
bbb38e8
 
d2c9b66
 
 
 
 
89aa5ab
d2c9b66
 
bc1fc47
 
d2c9b66
 
 
bc1fc47
 
d2c9b66
 
bc1fc47
 
 
d2c9b66
ed56a3e
 
 
 
 
d2c9b66
 
 
 
 
 
 
af13ace
 
 
d2c9b66
 
a6316fc
 
d2c9b66
8d6aabd
 
548acb6
8d6aabd
ee3b958
d2c9b66
 
 
a218889
d2c9b66
 
ffc2074
d2c9b66
 
 
 
 
 
 
d722245
 
e39d4a6
d2c9b66
c4729b7
d2c9b66
 
 
 
9dbd468
078f16b
2527cf0
52fdd94
2527cf0
2486fc0
2527cf0
52fdd94
2527cf0
52fdd94
2527cf0
52fdd94
2527cf0
 
ffc2074
eaa6790
 
a316f4d
c4729b7
 
52fdd94
f13eb4d
2527cf0
c4729b7
52fdd94
d2c9b66
52fdd94
 
d2c9b66
 
 
 
a218889
d2c9b66
 
 
 
52fdd94
d2c9b66
 
 
 
52fdd94
d2c9b66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fd5bc5
d2c9b66
 
 
e39980f
d2c9b66
 
 
 
 
 
6655790
d2c9b66
 
a218889
d2c9b66
 
9e610dd
d2c9b66
ecf9177
078f16b
2486fc0
3f5ca3c
078f16b
 
 
a218889
3f5ca3c
 
 
 
f707e60
 
3f5ca3c
 
a218889
3f5ca3c
 
 
 
 
 
a218889
 
3f5ca3c
a218889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f5ca3c
 
 
 
 
 
a218889
3f5ca3c
4895059
 
 
 
 
 
 
b21cad7
4895059
d2c9b66
9f51691
b6c2388
 
548acb6
9f51691
b6c2388
d2c9b66
a218889
2486fc0
fce3ed1
c4729b7
548acb6
 
8d6aabd
 
548acb6
83cd1bb
52fdd94
 
 
a218889
52fdd94
 
078f16b
52fdd94
 
 
 
 
 
b6c2388
d2c9b66
 
 
3fd5bc5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import gradio as gr
import numpy as np
import random, json, spaces, torch, time
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
from videox_fun.pipeline import ZImageControlPipeline
from videox_fun.models import ZImageControlTransformer2DModel
from transformers import AutoTokenizer, Qwen3ForCausalLM
from diffusers import AutoencoderKL
from utils.image_utils import get_image_latent, rescale_image
from utils.prompt_utils import polish_prompt
# from controlnet_aux import HEDdetector, MLSDdetector, OpenposeDetector, CannyDetector, MidasDetector
from controlnet_aux.processor import Processor


# MODEL_REPO = "Tongyi-MAI/Z-Image-Turbo"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1280

# git clone https://huggingface.co/Tongyi-MAI/Z-Image-Turbo
MODEL_LOCAL = "models/Z-Image-Turbo/"
# curl -L -o Z-Image-Turbo-Fun-Controlnet-Union.safetensors https://huggingface.co/alibaba-pai/Z-Image-Turbo-Fun-Controlnet-Union/resolve/main/Z-Image-Turbo-Fun-Controlnet-Union.safetensors
TRANSFORMER_LOCAL = "models/Z-Image-Turbo-Fun-Controlnet-Union.safetensors"

weight_dtype = torch.bfloat16

# load transformer
transformer = ZImageControlTransformer2DModel.from_pretrained(
    MODEL_LOCAL,
    subfolder="transformer",
    transformer_additional_kwargs={
        "control_layers_places": [0, 5, 10, 15, 20, 25],
        "control_in_dim": 16
    },
).to("cuda", torch.bfloat16)

if TRANSFORMER_LOCAL is not None:
    print(f"From checkpoint: {TRANSFORMER_LOCAL}")
    from safetensors.torch import load_file, safe_open
    state_dict = load_file(TRANSFORMER_LOCAL)
    state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict

    m, u = transformer.load_state_dict(state_dict, strict=False)
    print(f"missing keys: {len(m)}, unexpected keys: {len(u)}")

# load ZImageControlPipeline
vae = AutoencoderKL.from_pretrained(
    MODEL_LOCAL,
    subfolder="vae",
    device_map="cuda"
).to(weight_dtype)

tokenizer = AutoTokenizer.from_pretrained(
    MODEL_LOCAL, 
    subfolder="tokenizer"
)
text_encoder = Qwen3ForCausalLM.from_pretrained(
    MODEL_LOCAL, 
    subfolder="text_encoder", 
    torch_dtype=weight_dtype,
)
# scheduler = FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000, shift=3)
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
    MODEL_LOCAL, 
    subfolder="scheduler"
)
pipe = ZImageControlPipeline(
    vae=vae,
    tokenizer=tokenizer,
    text_encoder=text_encoder,
    transformer=transformer,
    scheduler=scheduler,
)
pipe.to("cuda", torch.bfloat16)
# pipe.transformer = transformer
# pipe.to("cuda")

# ======== AoTI compilation + FA3 ========
# pipe.transformer.layers._repeated_blocks = ["ZImageTransformerBlock"]
# spaces.aoti_blocks_load(pipe.transformer.layers, "zerogpu-aoti/Z-Image", variant="fa3")

def prepare(prompt, is_polish_prompt):
    if not is_polish_prompt: return prompt, False
    polished_prompt = polish_prompt(prompt)
    return polished_prompt, True

@spaces.GPU
def inference(
    prompt,
    negative_prompt,
    input_image,
    image_scale=1.0,
    control_mode='Canny',
    control_context_scale = 0.75,
    seed=42,
    randomize_seed=True,
    guidance_scale=1.5,
    num_inference_steps=8,
    progress=gr.Progress(track_tqdm=True),
):
    timestamp = time.time()
    print(f"timestamp: {timestamp}")

    # process image
    print("DEBUG: process image")
    if input_image is None:
        print("Error: input_image is empty.")
        return None
    
    # input_image, width, height = scale_image(input_image, image_scale)
    # control_mode='HED'
    processor_id = 'canny'
    if control_mode == 'HED':
        processor_id = 'softedge_hed'
    if control_mode =='Depth':
        processor_id = 'depth_midas'
    if control_mode =='MLSD':
        processor_id = 'mlsd'
    if control_mode =='Pose':
        processor_id = 'openpose_full'

    print(f"DEBUG: processor_id={processor_id}")
    processor = Processor(processor_id)

    # Width must be divisible by 16
    control_image, width, height = rescale_image(input_image, image_scale, 16)
    control_image = control_image.resize((1024, 1024))

    print("DEBUG: processor running")
    control_image = processor(control_image, to_pil=True)
    control_image = control_image.resize((width, height))

    print("DEBUG: control_image_torch")
    control_image_torch = get_image_latent(control_image, sample_size=[height, width])[:, :, 0]

    # generation
    if randomize_seed: seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)

    image = pipe(
        prompt=prompt,
        negative_prompt = negative_prompt,
        height=height,
        width=width,
        generator=generator,
        guidance_scale=guidance_scale,
        control_image=control_image_torch,
        num_inference_steps=num_inference_steps,
        control_context_scale=control_context_scale,
    ).images[0]

    return image, seed, control_image


def read_file(path: str) -> str:
    with open(path, 'r', encoding='utf-8') as f:
        content = f.read()
    return content


css = """
#col-container {
    margin: 0 auto;
    max-width: 960px;
}
"""

with open('static/data.json', 'r') as file:
    data = json.load(file)
examples = data['examples']

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        with gr.Column():
            gr.HTML(read_file("static/header.html"))
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(
                    height=290, sources=['upload', 'clipboard'], 
                    image_mode='RGB', 
                    # elem_id="image_upload", 
                    type="pil", label="Upload")
                
                prompt = gr.Textbox(
                    label="Prompt",
                    show_label=False,
                    lines=2,
                    placeholder="Enter your prompt",
                    # container=False,
                )
                is_polish_prompt = gr.Checkbox(label="Polish prompt", value=True)
                control_mode = gr.Radio(
                    choices=["Canny", "Depth", "HED", "MLSD", "Pose"],
                    value="Canny",
                    label="Control Mode"
                )
                run_button = gr.Button("Generate", variant="primary")
                with gr.Accordion("Advanced Settings", open=False):
                    
                    negative_prompt = gr.Textbox(
                        label="Negative prompt",
                        lines=2,
                        container=False,
                        placeholder="Enter your negative prompt",
                        value="blurry ugly bad"
                    )
                    with gr.Row():
                        num_inference_steps = gr.Slider(
                            label="Steps",
                            minimum=1,
                            maximum=30,
                            step=1,
                            value=9,
                        )
                        control_context_scale = gr.Slider(
                            label="Context scale",
                            minimum=0.0,
                            maximum=1.0,
                            step=0.01,
                            value=0.75,
                        )

                    with gr.Row():
                        guidance_scale = gr.Slider(
                            label="Guidance scale",
                            minimum=0.0,
                            maximum=10.0,
                            step=0.1,
                            value=1.0,
                        )

                        image_scale = gr.Slider(
                            label="Image scale",
                            minimum=0.5,
                            maximum=2.0,
                            step=0.1,
                            value=1.0,
                        )

                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        value=42,
                    )
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=False)

            with gr.Column():
                output_image = gr.Image(label="Generated image", show_label=False)
                polished_prompt = gr.Textbox(label="Polished prompt", interactive=False)

                with gr.Accordion("Preprocessor output", open=False):
                    control_image = gr.Image(label="Control image", show_label=False)
                    

        
        gr.Examples(examples=examples, inputs=[input_image, prompt, control_mode])
        gr.Markdown(read_file("static/footer.md"))

    run_button.click(
        fn=prepare,
        inputs=[prompt, is_polish_prompt],
        outputs=[polished_prompt, is_polish_prompt]
        # outputs=gr.State(),  # Pass to the next function, not to UI at this step
    ).then(
        fn=inference,
        inputs=[
            polished_prompt,
            negative_prompt,
            input_image,
            image_scale,
            control_mode,
            control_context_scale,
            seed,
            randomize_seed,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[output_image, seed, control_image],
    )

if __name__ == "__main__":
    demo.launch(mcp_server=True)