import os import csv import uuid import json import logging import pinecone import gradio as gr from PIL import Image from typing import Union from openai import Client from pinecone import Index from services import audio_model, gcp if not os.path.exists('tts_model'): # Get TTS model audio_model.download_model() from services.audio import * from services.video import * pinecone.init(api_key=os.getenv('PINECONE_API_KEY'), environment=os.getenv('PINECONE_ENV')) INDEX = Index(os.getenv('PINECONE_INDEX')) OPENAI_CLIENT = Client() TRANSLATE_LANGUAGES = {'español': 'es', 'ingles': 'en', 'portugués': 'pt'} TRANSLATE_GREET = {'Saludo': 'greeting', 'Despedida': 'goodbye', 'Error': 'error'} def add_data_table(table: list[list[str]], *data: str) -> tuple[list[list[str]], list[str]]: """ Adds the data to the table. Some data consist of two columns others only one. So depending on that, the new row and returned value will be different. :param table: table to add the data to :param data: new row to be added to the table :return: updated table and list of strings for cleaning the input """ if len(data) == 3: # It is the greet tab new_value = '', *data[1:] elif data[-1] in ['español', 'ingles', 'portugués']: new_value = '', data[-1] else: new_value = '', '' # The table is empty, do not append it but replace the first row if all(column == '' for column in table[0]): table[0] = ['❌', *data] # Add the new data else: table.append(['❌', *data]) return table, *new_value def remove_data_table(table: list[list[str]], evt: gr.SelectData) -> list[list[str]]: """ Deletes a row on the table if the selected column is the first one. :param table: clicked table :param evt: the event (has info of the position of the click) :return: updated table """ # The clicked column is not the first one (the one with the X), do not do anything if evt.index[1] != 0: return table # The list only has one row, do not delete it, just put the default one if len(table) == 1: table[0] = ['' for _ in range(len(table[0]))] # Delete the row else: del table[evt.index[0]] return table def add_language(languages: list[str]) -> Union[gr.Error, tuple[gr.helpers, gr.helpers, gr.helpers]]: """ Updated the dropdown with the selected languages :param languages: list of selected languages :return: three updated dropdowns if at least 1 language was selected, otherwise an error """ if len(languages) == 0: raise gr.Error('Debe seleccionar al menos 1 idioma') return ( gr.update(choices=[i for i in languages], value=languages[0], interactive=True), gr.update(choices=[i for i in languages], value=languages[0], interactive=True), gr.update(choices=[i for i in languages], value=languages[0], interactive=True) ) def create_chatbot( client: str, name: str, messages_table: list[list[str]], random_table: list[list[str]], questions_table: list[list[str]], image: Image ) -> gr.helpers: """ Creation of the chatbot. It creates all the audios, videos csv files for the given tables (greetings, goodbyes, errors and random) and uploads them to GCP, and it creates the vectorstore with the given questions and answers. :param client: name of the client (Nosotras, Visit Orlando, etc.) :param name: name of the chatbot (Bella, Roomie, etc.) :param messages_table: table with the greetings, goodbyes and errors messages :param random_table: table with the random data about the client :param questions_table: table with the questions and answers for each question :param image: image used as base for the videos :return: updates the value of a button (know lets know the user if the process is done or there was an error) """ # Set up general info client_name = client.lower().replace(' ', '-') _ = name.lower() # TODO: use it # Group messages by their type (greeting, goodbye or error) and language messages = dict() for message in messages_table: msg = message[1] type_msg = TRANSLATE_GREET[message[2]] language_msg = TRANSLATE_LANGUAGES[message[-1]] os.makedirs(f'assets/{client_name}/{type_msg}s', exist_ok=True) if type_msg not in messages: messages[type_msg] = {language_msg: [msg]} else: if language_msg not in messages[type_msg]: messages[type_msg][language_msg] = [msg] else: messages[type_msg][language_msg].append(msg) # Create CSV files (greeting, goodbye and error) for type_msg in messages: for language in messages[type_msg]: with (open(f'assets/{client_name}/{type_msg}s/{language}.csv', mode='w', encoding='utf-8', newline='') as outfile): writer = csv.writer(outfile) for msg in messages[type_msg][language]: writer.writerow([msg]) # Create the audios (greeting, goodbye and error) path_audios = f'assets/{client_name}/media/audio' os.makedirs(path_audios, exist_ok=True) for type_msg in messages: for language in messages[type_msg]: for i, msg in enumerate(messages[type_msg][language]): full_path = f'{path_audios}/{type_msg}_{language}_{i}' get_audio(msg, language, full_path) # Group random audios by their language random = dict() for _, msg, language in random_table: short_language = TRANSLATE_LANGUAGES[language] if short_language not in random: random[short_language] = [msg] else: random[short_language].append(msg) # Create the random audios for language in random: for i, msg in enumerate(random[language]): full_path = f'{path_audios}/random_{language}_{i}' get_audio(msg, language, full_path) # Save image os.makedirs(f'assets/{client_name}/media/image', exist_ok=True) image.save(f'assets/{client_name}/media/image/base.png') # Upload files and audios to bucket in GCP gcp.upload_folder(client_name, f'assets/{client_name}') # Create videos for the generated audios and the waiting video (it is muted) path_videos = f'assets/{client_name}/media/video' os.makedirs(path_videos, exist_ok=True) list_audios = os.listdir(path_audios) + ['waiting.wav'] for audio_file in list_audios: name_file = audio_file.split('.')[0] link_audio = gcp.get_link_file(client_name, 'audio', audio_file) link_image = gcp.get_link_file(client_name, 'image', 'base.png') try: get_video(link_audio, link_image, f'{path_videos}/{name_file}') except Exception as e: gr.Error(f'Problema con la creación del video, hable con el administrador. Error: {e}') logging.error(e) return gr.update(value='ERROR!', interactive=False) # Upload videos to GCP gcp.upload_folder(client_name, path_videos) # Set up vectorstore vectors = [] for _, question, context in questions_table: vector = { "id": str(uuid.uuid4()), "values": _get_embedding(question), "metadata": {'Text': context}, } vectors.append(vector) INDEX.upsert(vectors=vectors, namespace=f'{client_name}-context') # Change text in the button return gr.update(value='Chatbot created!!!', interactive=False) def save_prompts(client: str, context_prompt: str, prompts_table: list[list[str]]) -> None: """ Saves all the prompts (standalone and one for each language) and uploads them to Google Cloud Storage :param client: name of the client :param context_prompt: standalone prompt used to search into the vectorstore :param prompts_table: table with the prompt of each language :return: None """ client_name = client.lower().replace(' ', '-') path_prompts = f'assets/{client_name}/prompts' os.makedirs(path_prompts, exist_ok=True) # Save standalone prompt. It is the same for all languages with open(f'{path_prompts}/prompt_standalone_q.txt', mode='w', encoding='utf-8') as outfile: outfile.write(context_prompt) # Save the prompt of each language for _, prompt, language in prompts_table: language_prompt = TRANSLATE_LANGUAGES[language] with open(f'{path_prompts}/prompt_{language_prompt}.txt', mode='w', encoding='utf-8') as outfile: outfile.write(prompt) gcp.upload_folder(client_name, path_prompts) return def generate_json(client: str, languages: list[str], max_num_questions: int, chatbot_name: str) -> gr.helpers: """ Creates a json file with the environment variables used in the API :param client: :param languages: :param max_num_questions: :param chatbot_name: :return: gradio file with the value as the path of the json file """ # Format the name and the languages short_languages = ''.join(f'{TRANSLATE_LANGUAGES[language]},' for language in languages) short_languages = short_languages[:-1] client_name = client.lower().replace(' ', '-') json_object = json.dumps( { 'CLIENT_NAME': client_name, 'MODEL_OPENAI': os.getenv('OPENAI_MODEL'), 'LANGUAGES': short_languages, 'MAX_NUM_QUESTIONS': max_num_questions, 'NUM_VECTORS_CONTEXT': 10, 'THRESHOLD_RECYCLE': 0.97, 'OPENAI_API_KEY': 'Check OpenAI for this', 'CHATBOT_NAME': chatbot_name, 'HAS_ROADMAP': 0, 'SAVE_ANSWERS': 0, 'USE_RECYCLED_DATA': 1 }, indent=4 ) path_json = f"assets/{client_name}/chatbot_variables.json" with open(path_json, mode='w', encoding='utf-8') as outfile: outfile.write(json_object) return gr.update(value=path_json, label='Output file', interactive=True) def _get_embedding(sentence: str) -> list[float]: """ Gets the embedding of a word/sentence/paragraph :param sentence: input of the model :return: list of floats representing the embedding """ response = OPENAI_CLIENT.embeddings.create( input=sentence, model='text-embedding-ada-002' ) return response.data[0].embedding