Commit
·
19795d9
1
Parent(s):
0d2146c
Create data_validator.py
Browse filesAdding Data Validation Schemas
- data/data_validator.py +772 -0
data/data_validator.py
ADDED
|
@@ -0,0 +1,772 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# File: data/data_validator.py (NEW FILE)
|
| 2 |
+
# Comprehensive data validation pipeline with checkpoints and monitoring
|
| 3 |
+
|
| 4 |
+
import json
|
| 5 |
+
import time
|
| 6 |
+
import logging
|
| 7 |
+
import pandas as pd
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
from datetime import datetime, timedelta
|
| 10 |
+
from typing import List, Dict, Any, Tuple, Optional, Union
|
| 11 |
+
from pydantic import ValidationError
|
| 12 |
+
import hashlib
|
| 13 |
+
from collections import defaultdict, Counter
|
| 14 |
+
|
| 15 |
+
# Import validation schemas
|
| 16 |
+
from .validation_schemas import (
|
| 17 |
+
NewsArticleSchema, TextContentSchema, LabelSchema, DataSourceSchema,
|
| 18 |
+
BatchValidationSchema, ValidationResultSchema, BatchValidationResultSchema,
|
| 19 |
+
ValidationLevel, TextQualityLevel, DataSource, NewsLabel
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
# Configure logging
|
| 23 |
+
logging.basicConfig(level=logging.INFO)
|
| 24 |
+
logger = logging.getLogger(__name__)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class ValidationCheckpoint:
|
| 28 |
+
"""Individual validation checkpoint for pipeline monitoring"""
|
| 29 |
+
|
| 30 |
+
def __init__(self, name: str, description: str, validation_level: ValidationLevel = ValidationLevel.MODERATE):
|
| 31 |
+
self.name = name
|
| 32 |
+
self.description = description
|
| 33 |
+
self.validation_level = validation_level
|
| 34 |
+
self.start_time = None
|
| 35 |
+
self.end_time = None
|
| 36 |
+
self.results = []
|
| 37 |
+
self.errors = []
|
| 38 |
+
self.warnings = []
|
| 39 |
+
|
| 40 |
+
def start(self):
|
| 41 |
+
"""Start checkpoint timing"""
|
| 42 |
+
self.start_time = time.time()
|
| 43 |
+
logger.info(f"Starting validation checkpoint: {self.name}")
|
| 44 |
+
|
| 45 |
+
def end(self):
|
| 46 |
+
"""End checkpoint timing"""
|
| 47 |
+
self.end_time = time.time()
|
| 48 |
+
duration = self.processing_time
|
| 49 |
+
logger.info(f"Completed validation checkpoint: {self.name} ({duration:.2f}s)")
|
| 50 |
+
|
| 51 |
+
def add_result(self, result: ValidationResultSchema):
|
| 52 |
+
"""Add validation result"""
|
| 53 |
+
self.results.append(result)
|
| 54 |
+
|
| 55 |
+
def add_error(self, error: str):
|
| 56 |
+
"""Add validation error"""
|
| 57 |
+
self.errors.append(error)
|
| 58 |
+
logger.error(f"Checkpoint {self.name}: {error}")
|
| 59 |
+
|
| 60 |
+
def add_warning(self, warning: str):
|
| 61 |
+
"""Add validation warning"""
|
| 62 |
+
self.warnings.append(warning)
|
| 63 |
+
logger.warning(f"Checkpoint {self.name}: {warning}")
|
| 64 |
+
|
| 65 |
+
@property
|
| 66 |
+
def processing_time(self) -> float:
|
| 67 |
+
"""Calculate processing time"""
|
| 68 |
+
if self.start_time and self.end_time:
|
| 69 |
+
return self.end_time - self.start_time
|
| 70 |
+
return 0.0
|
| 71 |
+
|
| 72 |
+
@property
|
| 73 |
+
def success_rate(self) -> float:
|
| 74 |
+
"""Calculate success rate"""
|
| 75 |
+
if not self.results:
|
| 76 |
+
return 0.0
|
| 77 |
+
valid_count = sum(1 for result in self.results if result.is_valid)
|
| 78 |
+
return valid_count / len(self.results)
|
| 79 |
+
|
| 80 |
+
def to_dict(self) -> Dict[str, Any]:
|
| 81 |
+
"""Convert checkpoint to dictionary"""
|
| 82 |
+
return {
|
| 83 |
+
'name': self.name,
|
| 84 |
+
'description': self.description,
|
| 85 |
+
'validation_level': self.validation_level.value,
|
| 86 |
+
'processing_time': self.processing_time,
|
| 87 |
+
'total_validations': len(self.results),
|
| 88 |
+
'success_rate': self.success_rate,
|
| 89 |
+
'error_count': len(self.errors),
|
| 90 |
+
'warning_count': len(self.warnings),
|
| 91 |
+
'errors': self.errors,
|
| 92 |
+
'warnings': self.warnings
|
| 93 |
+
}
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
class DataValidationPipeline:
|
| 97 |
+
"""Comprehensive data validation pipeline with checkpoints and monitoring"""
|
| 98 |
+
|
| 99 |
+
def __init__(self, base_path: Optional[Path] = None):
|
| 100 |
+
self.base_path = base_path or Path("/tmp")
|
| 101 |
+
self.setup_paths()
|
| 102 |
+
self.checkpoints = {}
|
| 103 |
+
self.validation_history = []
|
| 104 |
+
self.quality_stats = defaultdict(int)
|
| 105 |
+
|
| 106 |
+
def setup_paths(self):
|
| 107 |
+
"""Setup validation paths"""
|
| 108 |
+
self.logs_dir = self.base_path / "logs"
|
| 109 |
+
self.validation_dir = self.base_path / "validation"
|
| 110 |
+
self.cache_dir = self.base_path / "cache"
|
| 111 |
+
|
| 112 |
+
# Create directories
|
| 113 |
+
for path in [self.logs_dir, self.validation_dir, self.cache_dir]:
|
| 114 |
+
path.mkdir(parents=True, exist_ok=True)
|
| 115 |
+
|
| 116 |
+
# Setup file paths
|
| 117 |
+
self.validation_log_path = self.logs_dir / "validation_log.json"
|
| 118 |
+
self.validation_stats_path = self.validation_dir / "validation_statistics.json"
|
| 119 |
+
self.failed_validations_path = self.validation_dir / "failed_validations.json"
|
| 120 |
+
self.quality_report_path = self.validation_dir / "quality_report.json"
|
| 121 |
+
|
| 122 |
+
def create_checkpoint(self, name: str, description: str,
|
| 123 |
+
validation_level: ValidationLevel = ValidationLevel.MODERATE) -> ValidationCheckpoint:
|
| 124 |
+
"""Create a new validation checkpoint"""
|
| 125 |
+
checkpoint = ValidationCheckpoint(name, description, validation_level)
|
| 126 |
+
self.checkpoints[name] = checkpoint
|
| 127 |
+
return checkpoint
|
| 128 |
+
|
| 129 |
+
def validate_single_article(self, text: str, label: int, source: str,
|
| 130 |
+
validation_level: ValidationLevel = ValidationLevel.MODERATE,
|
| 131 |
+
**metadata) -> ValidationResultSchema:
|
| 132 |
+
"""Validate a single article with comprehensive checks"""
|
| 133 |
+
|
| 134 |
+
start_time = time.time()
|
| 135 |
+
errors = []
|
| 136 |
+
warnings = []
|
| 137 |
+
quality_metrics = {}
|
| 138 |
+
|
| 139 |
+
try:
|
| 140 |
+
# Create text content schema
|
| 141 |
+
text_content = TextContentSchema(text=text)
|
| 142 |
+
quality_metrics['word_count'] = text_content.word_count
|
| 143 |
+
quality_metrics['character_count'] = text_content.character_count
|
| 144 |
+
quality_metrics['sentence_count'] = text_content.sentence_count
|
| 145 |
+
|
| 146 |
+
except ValidationError as e:
|
| 147 |
+
for error in e.errors():
|
| 148 |
+
errors.append(f"Text validation: {error['msg']}")
|
| 149 |
+
|
| 150 |
+
try:
|
| 151 |
+
# Create label schema
|
| 152 |
+
label_info = LabelSchema(label=label)
|
| 153 |
+
|
| 154 |
+
except ValidationError as e:
|
| 155 |
+
for error in e.errors():
|
| 156 |
+
errors.append(f"Label validation: {error['msg']}")
|
| 157 |
+
|
| 158 |
+
try:
|
| 159 |
+
# Create source schema
|
| 160 |
+
source_info = DataSourceSchema(
|
| 161 |
+
source=DataSource(source),
|
| 162 |
+
timestamp=datetime.now(),
|
| 163 |
+
**{k: v for k, v in metadata.items() if k in ['url', 'batch_id']}
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
except ValidationError as e:
|
| 167 |
+
for error in e.errors():
|
| 168 |
+
errors.append(f"Source validation: {error['msg']}")
|
| 169 |
+
|
| 170 |
+
# Additional quality checks based on validation level
|
| 171 |
+
if validation_level in [ValidationLevel.MODERATE, ValidationLevel.STRICT]:
|
| 172 |
+
|
| 173 |
+
# Language detection (simplified)
|
| 174 |
+
if text:
|
| 175 |
+
english_words = {'the', 'and', 'is', 'in', 'to', 'of', 'a', 'that', 'it', 'with', 'for', 'as', 'was', 'on', 'are', 'you'}
|
| 176 |
+
words = set(text.lower().split())
|
| 177 |
+
english_ratio = len(words & english_words) / len(words) if words else 0
|
| 178 |
+
|
| 179 |
+
if english_ratio < 0.1:
|
| 180 |
+
warnings.append("Text may not be in English")
|
| 181 |
+
|
| 182 |
+
quality_metrics['english_ratio'] = english_ratio
|
| 183 |
+
|
| 184 |
+
# Content coherence check
|
| 185 |
+
if text and len(text.split()) > 10:
|
| 186 |
+
sentences = [s.strip() for s in text.split('.') if s.strip()]
|
| 187 |
+
if len(sentences) > 1:
|
| 188 |
+
avg_sentence_length = sum(len(s.split()) for s in sentences) / len(sentences)
|
| 189 |
+
quality_metrics['avg_sentence_length'] = avg_sentence_length
|
| 190 |
+
|
| 191 |
+
if avg_sentence_length < 3:
|
| 192 |
+
warnings.append("Very short average sentence length")
|
| 193 |
+
elif avg_sentence_length > 50:
|
| 194 |
+
warnings.append("Very long average sentence length")
|
| 195 |
+
|
| 196 |
+
if validation_level == ValidationLevel.STRICT:
|
| 197 |
+
|
| 198 |
+
# Advanced quality checks
|
| 199 |
+
if text:
|
| 200 |
+
# Check for AI-generated patterns (simplified)
|
| 201 |
+
ai_indicators = ['as an ai', 'i am an artificial', 'generated by', 'chatgpt', 'gpt-3', 'gpt-4']
|
| 202 |
+
if any(indicator in text.lower() for indicator in ai_indicators):
|
| 203 |
+
warnings.append("Text may be AI-generated")
|
| 204 |
+
|
| 205 |
+
# Check for template patterns
|
| 206 |
+
template_patterns = [r'\{[^}]+\}', r'\[[^\]]+\]', r'<[^>]+>']
|
| 207 |
+
import re
|
| 208 |
+
for pattern in template_patterns:
|
| 209 |
+
if re.search(pattern, text):
|
| 210 |
+
warnings.append("Text contains template patterns")
|
| 211 |
+
break
|
| 212 |
+
|
| 213 |
+
# Check readability (simplified Flesch reading ease)
|
| 214 |
+
words = text.split()
|
| 215 |
+
sentences = len([s for s in text.split('.') if s.strip()])
|
| 216 |
+
syllables = sum(max(1, len([c for c in word if c.lower() in 'aeiouy'])) for word in words)
|
| 217 |
+
|
| 218 |
+
if sentences > 0 and words:
|
| 219 |
+
avg_sentence_length = len(words) / sentences
|
| 220 |
+
avg_syllables = syllables / len(words)
|
| 221 |
+
|
| 222 |
+
# Simplified Flesch score
|
| 223 |
+
flesch_score = 206.835 - (1.015 * avg_sentence_length) - (84.6 * avg_syllables)
|
| 224 |
+
quality_metrics['flesch_score'] = flesch_score
|
| 225 |
+
|
| 226 |
+
if flesch_score < 30:
|
| 227 |
+
warnings.append("Text is very difficult to read")
|
| 228 |
+
elif flesch_score > 90:
|
| 229 |
+
warnings.append("Text is very easy to read (may be simplistic)")
|
| 230 |
+
|
| 231 |
+
# Calculate overall quality score
|
| 232 |
+
quality_score = self._calculate_quality_score(quality_metrics, errors, warnings)
|
| 233 |
+
quality_metrics['overall_quality_score'] = quality_score
|
| 234 |
+
|
| 235 |
+
# Determine if validation passed
|
| 236 |
+
is_valid = len(errors) == 0
|
| 237 |
+
processing_time = time.time() - start_time
|
| 238 |
+
|
| 239 |
+
return ValidationResultSchema(
|
| 240 |
+
is_valid=is_valid,
|
| 241 |
+
errors=errors,
|
| 242 |
+
warnings=warnings,
|
| 243 |
+
quality_metrics=quality_metrics,
|
| 244 |
+
validation_level=validation_level,
|
| 245 |
+
processing_time=processing_time
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
def validate_batch(self, articles_data: List[Dict[str, Any]],
|
| 249 |
+
batch_id: Optional[str] = None,
|
| 250 |
+
validation_level: ValidationLevel = ValidationLevel.MODERATE) -> BatchValidationResultSchema:
|
| 251 |
+
"""Validate a batch of articles with comprehensive reporting"""
|
| 252 |
+
|
| 253 |
+
if not batch_id:
|
| 254 |
+
batch_id = f"batch_{datetime.now().strftime('%Y%m%d_%H%M%S')}_{hashlib.md5(str(articles_data).encode()).hexdigest()[:8]}"
|
| 255 |
+
|
| 256 |
+
logger.info(f"Starting batch validation: {batch_id} ({len(articles_data)} articles)")
|
| 257 |
+
|
| 258 |
+
# Create validation checkpoint
|
| 259 |
+
checkpoint = self.create_checkpoint(
|
| 260 |
+
f"batch_validation_{batch_id}",
|
| 261 |
+
f"Batch validation for {len(articles_data)} articles",
|
| 262 |
+
validation_level
|
| 263 |
+
)
|
| 264 |
+
checkpoint.start()
|
| 265 |
+
|
| 266 |
+
validation_results = []
|
| 267 |
+
valid_count = 0
|
| 268 |
+
invalid_count = 0
|
| 269 |
+
quality_distribution = Counter()
|
| 270 |
+
source_distribution = Counter()
|
| 271 |
+
|
| 272 |
+
# Validate each article
|
| 273 |
+
for i, article_data in enumerate(articles_data):
|
| 274 |
+
try:
|
| 275 |
+
text = article_data.get('text', '')
|
| 276 |
+
label = article_data.get('label', 0)
|
| 277 |
+
source = article_data.get('source', 'unknown')
|
| 278 |
+
|
| 279 |
+
# Extract metadata
|
| 280 |
+
metadata = {k: v for k, v in article_data.items()
|
| 281 |
+
if k not in ['text', 'label', 'source']}
|
| 282 |
+
|
| 283 |
+
# Validate article
|
| 284 |
+
result = self.validate_single_article(
|
| 285 |
+
text, label, source, validation_level, **metadata
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
validation_results.append(result)
|
| 289 |
+
checkpoint.add_result(result)
|
| 290 |
+
|
| 291 |
+
if result.is_valid:
|
| 292 |
+
valid_count += 1
|
| 293 |
+
else:
|
| 294 |
+
invalid_count += 1
|
| 295 |
+
|
| 296 |
+
# Update distributions
|
| 297 |
+
quality_score = result.quality_metrics.get('overall_quality_score', 0)
|
| 298 |
+
if quality_score >= 0.8:
|
| 299 |
+
quality_level = 'high'
|
| 300 |
+
elif quality_score >= 0.6:
|
| 301 |
+
quality_level = 'medium'
|
| 302 |
+
elif quality_score >= 0.4:
|
| 303 |
+
quality_level = 'low'
|
| 304 |
+
else:
|
| 305 |
+
quality_level = 'invalid'
|
| 306 |
+
|
| 307 |
+
quality_distribution[quality_level] += 1
|
| 308 |
+
source_distribution[source] += 1
|
| 309 |
+
|
| 310 |
+
except Exception as e:
|
| 311 |
+
error_msg = f"Failed to validate article {i}: {str(e)}"
|
| 312 |
+
checkpoint.add_error(error_msg)
|
| 313 |
+
invalid_count += 1
|
| 314 |
+
|
| 315 |
+
checkpoint.end()
|
| 316 |
+
|
| 317 |
+
# Calculate overall quality score
|
| 318 |
+
if validation_results:
|
| 319 |
+
quality_scores = [r.quality_metrics.get('overall_quality_score', 0) for r in validation_results]
|
| 320 |
+
overall_quality_score = sum(quality_scores) / len(quality_scores)
|
| 321 |
+
else:
|
| 322 |
+
overall_quality_score = 0.0
|
| 323 |
+
|
| 324 |
+
# Create validation summary
|
| 325 |
+
validation_summary = {
|
| 326 |
+
'batch_id': batch_id,
|
| 327 |
+
'total_articles': len(articles_data),
|
| 328 |
+
'validation_level': validation_level.value,
|
| 329 |
+
'processing_time': checkpoint.processing_time,
|
| 330 |
+
'success_rate': checkpoint.success_rate,
|
| 331 |
+
'error_count': len(checkpoint.errors),
|
| 332 |
+
'warning_count': len(checkpoint.warnings),
|
| 333 |
+
'quality_metrics': {
|
| 334 |
+
'average_quality_score': overall_quality_score,
|
| 335 |
+
'quality_distribution': dict(quality_distribution),
|
| 336 |
+
'source_distribution': dict(source_distribution)
|
| 337 |
+
}
|
| 338 |
+
}
|
| 339 |
+
|
| 340 |
+
# Create batch validation result
|
| 341 |
+
batch_result = BatchValidationResultSchema(
|
| 342 |
+
batch_id=batch_id,
|
| 343 |
+
total_articles=len(articles_data),
|
| 344 |
+
valid_articles=valid_count,
|
| 345 |
+
invalid_articles=invalid_count,
|
| 346 |
+
validation_results=validation_results,
|
| 347 |
+
overall_quality_score=overall_quality_score,
|
| 348 |
+
quality_distribution=dict(quality_distribution),
|
| 349 |
+
source_distribution=dict(source_distribution),
|
| 350 |
+
validation_summary=validation_summary
|
| 351 |
+
)
|
| 352 |
+
|
| 353 |
+
# Log batch validation
|
| 354 |
+
self._log_batch_validation(batch_result)
|
| 355 |
+
|
| 356 |
+
# Update statistics
|
| 357 |
+
self._update_validation_statistics(batch_result)
|
| 358 |
+
|
| 359 |
+
logger.info(f"Batch validation completed: {batch_id} "
|
| 360 |
+
f"({valid_count}/{len(articles_data)} valid, "
|
| 361 |
+
f"quality: {overall_quality_score:.3f})")
|
| 362 |
+
|
| 363 |
+
return batch_result
|
| 364 |
+
|
| 365 |
+
def validate_dataframe(self, df: pd.DataFrame,
|
| 366 |
+
validation_level: ValidationLevel = ValidationLevel.MODERATE,
|
| 367 |
+
batch_id: Optional[str] = None) -> BatchValidationResultSchema:
|
| 368 |
+
"""Validate a pandas DataFrame"""
|
| 369 |
+
|
| 370 |
+
# Convert DataFrame to list of dictionaries
|
| 371 |
+
articles_data = df.to_dict('records')
|
| 372 |
+
|
| 373 |
+
return self.validate_batch(articles_data, batch_id, validation_level)
|
| 374 |
+
|
| 375 |
+
def validate_csv_file(self, file_path: Path,
|
| 376 |
+
validation_level: ValidationLevel = ValidationLevel.MODERATE,
|
| 377 |
+
batch_id: Optional[str] = None) -> BatchValidationResultSchema:
|
| 378 |
+
"""Validate articles from a CSV file"""
|
| 379 |
+
|
| 380 |
+
try:
|
| 381 |
+
df = pd.read_csv(file_path)
|
| 382 |
+
if batch_id is None:
|
| 383 |
+
batch_id = f"csv_{file_path.stem}_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
|
| 384 |
+
|
| 385 |
+
return self.validate_dataframe(df, validation_level, batch_id)
|
| 386 |
+
|
| 387 |
+
except Exception as e:
|
| 388 |
+
logger.error(f"Failed to validate CSV file {file_path}: {e}")
|
| 389 |
+
raise
|
| 390 |
+
|
| 391 |
+
def validate_scraped_data(self, scraped_data: List[Dict[str, Any]],
|
| 392 |
+
source_name: str = "scraped_data") -> BatchValidationResultSchema:
|
| 393 |
+
"""Validate scraped data with specific checks for web content"""
|
| 394 |
+
|
| 395 |
+
# Create checkpoint for scraped data validation
|
| 396 |
+
checkpoint = self.create_checkpoint(
|
| 397 |
+
f"scraped_validation_{source_name}",
|
| 398 |
+
f"Validation for scraped data from {source_name}",
|
| 399 |
+
ValidationLevel.MODERATE
|
| 400 |
+
)
|
| 401 |
+
checkpoint.start()
|
| 402 |
+
|
| 403 |
+
# Add scraped-specific validation logic
|
| 404 |
+
enhanced_data = []
|
| 405 |
+
for item in scraped_data:
|
| 406 |
+
# Ensure required fields
|
| 407 |
+
if 'source' not in item:
|
| 408 |
+
item['source'] = 'scraped_real'
|
| 409 |
+
if 'label' not in item:
|
| 410 |
+
item['label'] = 0 # Default to real for scraped news
|
| 411 |
+
|
| 412 |
+
enhanced_data.append(item)
|
| 413 |
+
|
| 414 |
+
result = self.validate_batch(
|
| 415 |
+
enhanced_data,
|
| 416 |
+
f"scraped_{source_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
|
| 417 |
+
ValidationLevel.MODERATE
|
| 418 |
+
)
|
| 419 |
+
|
| 420 |
+
checkpoint.end()
|
| 421 |
+
|
| 422 |
+
# Additional scraped data quality checks
|
| 423 |
+
if result.overall_quality_score < 0.6:
|
| 424 |
+
checkpoint.add_warning(f"Low quality scraped data: {result.overall_quality_score:.3f}")
|
| 425 |
+
|
| 426 |
+
# Check for suspicious patterns in scraped data
|
| 427 |
+
suspicious_count = 0
|
| 428 |
+
for validation_result in result.validation_results:
|
| 429 |
+
if any('suspicious' in warning.lower() for warning in validation_result.warnings):
|
| 430 |
+
suspicious_count += 1
|
| 431 |
+
|
| 432 |
+
if suspicious_count > len(scraped_data) * 0.1: # More than 10% suspicious
|
| 433 |
+
checkpoint.add_warning(f"High number of suspicious articles: {suspicious_count}/{len(scraped_data)}")
|
| 434 |
+
|
| 435 |
+
return result
|
| 436 |
+
|
| 437 |
+
def _calculate_quality_score(self, quality_metrics: Dict[str, Any],
|
| 438 |
+
errors: List[str], warnings: List[str]) -> float:
|
| 439 |
+
"""Calculate overall quality score based on metrics and issues"""
|
| 440 |
+
|
| 441 |
+
base_score = 1.0
|
| 442 |
+
|
| 443 |
+
# Penalize for errors and warnings
|
| 444 |
+
base_score -= len(errors) * 0.2
|
| 445 |
+
base_score -= len(warnings) * 0.05
|
| 446 |
+
|
| 447 |
+
# Adjust based on content metrics
|
| 448 |
+
word_count = quality_metrics.get('word_count', 0)
|
| 449 |
+
if word_count < 20:
|
| 450 |
+
base_score -= 0.3
|
| 451 |
+
elif word_count < 50:
|
| 452 |
+
base_score -= 0.1
|
| 453 |
+
elif word_count > 1000:
|
| 454 |
+
base_score += 0.1
|
| 455 |
+
|
| 456 |
+
# Adjust based on readability
|
| 457 |
+
flesch_score = quality_metrics.get('flesch_score')
|
| 458 |
+
if flesch_score:
|
| 459 |
+
if 30 <= flesch_score <= 70: # Good readability range
|
| 460 |
+
base_score += 0.1
|
| 461 |
+
elif flesch_score < 10 or flesch_score > 90: # Poor readability
|
| 462 |
+
base_score -= 0.15
|
| 463 |
+
|
| 464 |
+
# Adjust based on English content ratio
|
| 465 |
+
english_ratio = quality_metrics.get('english_ratio')
|
| 466 |
+
if english_ratio:
|
| 467 |
+
if english_ratio >= 0.3:
|
| 468 |
+
base_score += 0.05
|
| 469 |
+
else:
|
| 470 |
+
base_score -= 0.1
|
| 471 |
+
|
| 472 |
+
return max(0.0, min(1.0, base_score))
|
| 473 |
+
|
| 474 |
+
def _log_batch_validation(self, batch_result: BatchValidationResultSchema):
|
| 475 |
+
"""Log batch validation results"""
|
| 476 |
+
try:
|
| 477 |
+
log_entry = {
|
| 478 |
+
'timestamp': datetime.now().isoformat(),
|
| 479 |
+
'batch_id': batch_result.batch_id,
|
| 480 |
+
'total_articles': batch_result.total_articles,
|
| 481 |
+
'valid_articles': batch_result.valid_articles,
|
| 482 |
+
'success_rate': batch_result.success_rate,
|
| 483 |
+
'overall_quality_score': batch_result.overall_quality_score,
|
| 484 |
+
'validation_summary': batch_result.validation_summary
|
| 485 |
+
}
|
| 486 |
+
|
| 487 |
+
# Load existing logs
|
| 488 |
+
logs = []
|
| 489 |
+
if self.validation_log_path.exists():
|
| 490 |
+
try:
|
| 491 |
+
with open(self.validation_log_path, 'r') as f:
|
| 492 |
+
logs = json.load(f)
|
| 493 |
+
except:
|
| 494 |
+
logs = []
|
| 495 |
+
|
| 496 |
+
logs.append(log_entry)
|
| 497 |
+
|
| 498 |
+
# Keep only last 1000 entries
|
| 499 |
+
if len(logs) > 1000:
|
| 500 |
+
logs = logs[-1000:]
|
| 501 |
+
|
| 502 |
+
# Save logs
|
| 503 |
+
with open(self.validation_log_path, 'w') as f:
|
| 504 |
+
json.dump(logs, f, indent=2)
|
| 505 |
+
|
| 506 |
+
except Exception as e:
|
| 507 |
+
logger.error(f"Failed to log batch validation: {e}")
|
| 508 |
+
|
| 509 |
+
def _update_validation_statistics(self, batch_result: BatchValidationResultSchema):
|
| 510 |
+
"""Update validation statistics"""
|
| 511 |
+
try:
|
| 512 |
+
# Load existing stats
|
| 513 |
+
stats = {}
|
| 514 |
+
if self.validation_stats_path.exists():
|
| 515 |
+
try:
|
| 516 |
+
with open(self.validation_stats_path, 'r') as f:
|
| 517 |
+
stats = json.load(f)
|
| 518 |
+
except:
|
| 519 |
+
stats = {}
|
| 520 |
+
|
| 521 |
+
# Initialize stats if empty
|
| 522 |
+
if not stats:
|
| 523 |
+
stats = {
|
| 524 |
+
'total_validations': 0,
|
| 525 |
+
'total_articles': 0,
|
| 526 |
+
'total_valid_articles': 0,
|
| 527 |
+
'average_quality_score': 0.0,
|
| 528 |
+
'validation_history': [],
|
| 529 |
+
'quality_trends': [],
|
| 530 |
+
'source_statistics': {},
|
| 531 |
+
'last_updated': None
|
| 532 |
+
}
|
| 533 |
+
|
| 534 |
+
# Update statistics
|
| 535 |
+
stats['total_validations'] += 1
|
| 536 |
+
stats['total_articles'] += batch_result.total_articles
|
| 537 |
+
stats['total_valid_articles'] += batch_result.valid_articles
|
| 538 |
+
|
| 539 |
+
# Update average quality score
|
| 540 |
+
current_avg = stats['average_quality_score']
|
| 541 |
+
total_validations = stats['total_validations']
|
| 542 |
+
stats['average_quality_score'] = (
|
| 543 |
+
(current_avg * (total_validations - 1) + batch_result.overall_quality_score) /
|
| 544 |
+
total_validations
|
| 545 |
+
)
|
| 546 |
+
|
| 547 |
+
# Add to history
|
| 548 |
+
history_entry = {
|
| 549 |
+
'timestamp': datetime.now().isoformat(),
|
| 550 |
+
'batch_id': batch_result.batch_id,
|
| 551 |
+
'quality_score': batch_result.overall_quality_score,
|
| 552 |
+
'success_rate': batch_result.success_rate,
|
| 553 |
+
'article_count': batch_result.total_articles
|
| 554 |
+
}
|
| 555 |
+
|
| 556 |
+
stats['validation_history'].append(history_entry)
|
| 557 |
+
stats['quality_trends'].append({
|
| 558 |
+
'timestamp': datetime.now().isoformat(),
|
| 559 |
+
'quality_score': batch_result.overall_quality_score
|
| 560 |
+
})
|
| 561 |
+
|
| 562 |
+
# Keep only last 100 history entries
|
| 563 |
+
if len(stats['validation_history']) > 100:
|
| 564 |
+
stats['validation_history'] = stats['validation_history'][-100:]
|
| 565 |
+
if len(stats['quality_trends']) > 100:
|
| 566 |
+
stats['quality_trends'] = stats['quality_trends'][-100:]
|
| 567 |
+
|
| 568 |
+
# Update source statistics
|
| 569 |
+
for source, count in batch_result.source_distribution.items():
|
| 570 |
+
if source not in stats['source_statistics']:
|
| 571 |
+
stats['source_statistics'][source] = {'total_articles': 0, 'total_validations': 0}
|
| 572 |
+
|
| 573 |
+
stats['source_statistics'][source]['total_articles'] += count
|
| 574 |
+
stats['source_statistics'][source]['total_validations'] += 1
|
| 575 |
+
|
| 576 |
+
stats['last_updated'] = datetime.now().isoformat()
|
| 577 |
+
|
| 578 |
+
# Save updated stats
|
| 579 |
+
with open(self.validation_stats_path, 'w') as f:
|
| 580 |
+
json.dump(stats, f, indent=2)
|
| 581 |
+
|
| 582 |
+
except Exception as e:
|
| 583 |
+
logger.error(f"Failed to update validation statistics: {e}")
|
| 584 |
+
|
| 585 |
+
def get_validation_statistics(self) -> Dict[str, Any]:
|
| 586 |
+
"""Get current validation statistics"""
|
| 587 |
+
try:
|
| 588 |
+
if self.validation_stats_path.exists():
|
| 589 |
+
with open(self.validation_stats_path, 'r') as f:
|
| 590 |
+
return json.load(f)
|
| 591 |
+
return {}
|
| 592 |
+
except Exception as e:
|
| 593 |
+
logger.error(f"Failed to load validation statistics: {e}")
|
| 594 |
+
return {}
|
| 595 |
+
|
| 596 |
+
def get_validation_history(self, limit: int = 50) -> List[Dict[str, Any]]:
|
| 597 |
+
"""Get validation history"""
|
| 598 |
+
try:
|
| 599 |
+
if self.validation_log_path.exists():
|
| 600 |
+
with open(self.validation_log_path, 'r') as f:
|
| 601 |
+
logs = json.load(f)
|
| 602 |
+
return logs[-limit:] if limit else logs
|
| 603 |
+
return []
|
| 604 |
+
except Exception as e:
|
| 605 |
+
logger.error(f"Failed to load validation history: {e}")
|
| 606 |
+
return []
|
| 607 |
+
|
| 608 |
+
def generate_quality_report(self) -> Dict[str, Any]:
|
| 609 |
+
"""Generate comprehensive quality report"""
|
| 610 |
+
try:
|
| 611 |
+
stats = self.get_validation_statistics()
|
| 612 |
+
|
| 613 |
+
if not stats:
|
| 614 |
+
return {'error': 'No validation statistics available'}
|
| 615 |
+
|
| 616 |
+
# Calculate trends
|
| 617 |
+
quality_trends = stats.get('quality_trends', [])
|
| 618 |
+
if len(quality_trends) >= 2:
|
| 619 |
+
recent_scores = [t['quality_score'] for t in quality_trends[-10:]]
|
| 620 |
+
older_scores = [t['quality_score'] for t in quality_trends[-20:-10]] if len(quality_trends) >= 20 else []
|
| 621 |
+
|
| 622 |
+
recent_avg = sum(recent_scores) / len(recent_scores)
|
| 623 |
+
older_avg = sum(older_scores) / len(older_scores) if older_scores else recent_avg
|
| 624 |
+
|
| 625 |
+
quality_trend = recent_avg - older_avg
|
| 626 |
+
else:
|
| 627 |
+
quality_trend = 0.0
|
| 628 |
+
|
| 629 |
+
# Generate report
|
| 630 |
+
report = {
|
| 631 |
+
'report_timestamp': datetime.now().isoformat(),
|
| 632 |
+
'overall_statistics': {
|
| 633 |
+
'total_validations': stats.get('total_validations', 0),
|
| 634 |
+
'total_articles': stats.get('total_articles', 0),
|
| 635 |
+
'overall_success_rate': (stats.get('total_valid_articles', 0) /
|
| 636 |
+
max(stats.get('total_articles', 1), 1)),
|
| 637 |
+
'average_quality_score': stats.get('average_quality_score', 0.0),
|
| 638 |
+
'quality_trend': quality_trend
|
| 639 |
+
},
|
| 640 |
+
'source_breakdown': stats.get('source_statistics', {}),
|
| 641 |
+
'recent_performance': {
|
| 642 |
+
'last_10_validations': quality_trends[-10:] if quality_trends else [],
|
| 643 |
+
'recent_average_quality': (sum(t['quality_score'] for t in quality_trends[-10:]) /
|
| 644 |
+
len(quality_trends[-10:])) if quality_trends else 0.0
|
| 645 |
+
},
|
| 646 |
+
'quality_assessment': self._assess_overall_quality(stats),
|
| 647 |
+
'recommendations': self._generate_recommendations(stats)
|
| 648 |
+
}
|
| 649 |
+
|
| 650 |
+
# Save report
|
| 651 |
+
with open(self.quality_report_path, 'w') as f:
|
| 652 |
+
json.dump(report, f, indent=2)
|
| 653 |
+
|
| 654 |
+
return report
|
| 655 |
+
|
| 656 |
+
except Exception as e:
|
| 657 |
+
logger.error(f"Failed to generate quality report: {e}")
|
| 658 |
+
return {'error': str(e)}
|
| 659 |
+
|
| 660 |
+
def _assess_overall_quality(self, stats: Dict[str, Any]) -> Dict[str, Any]:
|
| 661 |
+
"""Assess overall data quality"""
|
| 662 |
+
avg_quality = stats.get('average_quality_score', 0.0)
|
| 663 |
+
success_rate = stats.get('total_valid_articles', 0) / max(stats.get('total_articles', 1), 1)
|
| 664 |
+
|
| 665 |
+
if avg_quality >= 0.8 and success_rate >= 0.9:
|
| 666 |
+
quality_level = 'excellent'
|
| 667 |
+
quality_color = 'green'
|
| 668 |
+
elif avg_quality >= 0.6 and success_rate >= 0.8:
|
| 669 |
+
quality_level = 'good'
|
| 670 |
+
quality_color = 'blue'
|
| 671 |
+
elif avg_quality >= 0.4 and success_rate >= 0.6:
|
| 672 |
+
quality_level = 'fair'
|
| 673 |
+
quality_color = 'yellow'
|
| 674 |
+
else:
|
| 675 |
+
quality_level = 'poor'
|
| 676 |
+
quality_color = 'red'
|
| 677 |
+
|
| 678 |
+
return {
|
| 679 |
+
'quality_level': quality_level,
|
| 680 |
+
'quality_color': quality_color,
|
| 681 |
+
'average_score': avg_quality,
|
| 682 |
+
'success_rate': success_rate,
|
| 683 |
+
'assessment': f"Data quality is {quality_level} with {success_rate:.1%} validation success rate"
|
| 684 |
+
}
|
| 685 |
+
|
| 686 |
+
def _generate_recommendations(self, stats: Dict[str, Any]) -> List[str]:
|
| 687 |
+
"""Generate quality improvement recommendations"""
|
| 688 |
+
recommendations = []
|
| 689 |
+
|
| 690 |
+
avg_quality = stats.get('average_quality_score', 0.0)
|
| 691 |
+
success_rate = stats.get('total_valid_articles', 0) / max(stats.get('total_articles', 1), 1)
|
| 692 |
+
|
| 693 |
+
if avg_quality < 0.6:
|
| 694 |
+
recommendations.append("Improve data source quality - consider additional content filters")
|
| 695 |
+
|
| 696 |
+
if success_rate < 0.8:
|
| 697 |
+
recommendations.append("Review validation criteria - high failure rate detected")
|
| 698 |
+
|
| 699 |
+
source_stats = stats.get('source_statistics', {})
|
| 700 |
+
if source_stats:
|
| 701 |
+
# Find problematic sources
|
| 702 |
+
for source, source_info in source_stats.items():
|
| 703 |
+
if source_info.get('total_articles', 0) > 10: # Only check sources with enough data
|
| 704 |
+
# This is simplified - in practice you'd track success rates per source
|
| 705 |
+
pass
|
| 706 |
+
|
| 707 |
+
if len(recommendations) == 0:
|
| 708 |
+
recommendations.append("Data quality is satisfactory - continue current practices")
|
| 709 |
+
|
| 710 |
+
return recommendations
|
| 711 |
+
|
| 712 |
+
def cleanup_old_logs(self, days_to_keep: int = 30):
|
| 713 |
+
"""Clean up old validation logs"""
|
| 714 |
+
try:
|
| 715 |
+
cutoff_date = datetime.now() - timedelta(days=days_to_keep)
|
| 716 |
+
|
| 717 |
+
# Clean validation logs
|
| 718 |
+
if self.validation_log_path.exists():
|
| 719 |
+
with open(self.validation_log_path, 'r') as f:
|
| 720 |
+
logs = json.load(f)
|
| 721 |
+
|
| 722 |
+
filtered_logs = []
|
| 723 |
+
for log in logs:
|
| 724 |
+
try:
|
| 725 |
+
log_date = datetime.fromisoformat(log['timestamp'])
|
| 726 |
+
if log_date > cutoff_date:
|
| 727 |
+
filtered_logs.append(log)
|
| 728 |
+
except:
|
| 729 |
+
# Keep logs with invalid timestamps
|
| 730 |
+
filtered_logs.append(log)
|
| 731 |
+
|
| 732 |
+
with open(self.validation_log_path, 'w') as f:
|
| 733 |
+
json.dump(filtered_logs, f, indent=2)
|
| 734 |
+
|
| 735 |
+
logger.info(f"Cleaned up validation logs: kept {len(filtered_logs)}/{len(logs)} entries")
|
| 736 |
+
|
| 737 |
+
except Exception as e:
|
| 738 |
+
logger.error(f"Failed to cleanup old logs: {e}")
|
| 739 |
+
|
| 740 |
+
|
| 741 |
+
# Convenience functions for external use
|
| 742 |
+
def validate_text(text: str, label: int, source: str = "user_input",
|
| 743 |
+
validation_level: ValidationLevel = ValidationLevel.MODERATE) -> ValidationResultSchema:
|
| 744 |
+
"""Validate a single text input"""
|
| 745 |
+
validator = DataValidationPipeline()
|
| 746 |
+
return validator.validate_single_article(text, label, source, validation_level)
|
| 747 |
+
|
| 748 |
+
|
| 749 |
+
def validate_articles_list(articles: List[Dict[str, Any]],
|
| 750 |
+
validation_level: ValidationLevel = ValidationLevel.MODERATE) -> BatchValidationResultSchema:
|
| 751 |
+
"""Validate a list of articles"""
|
| 752 |
+
validator = DataValidationPipeline()
|
| 753 |
+
return validator.validate_batch(articles, validation_level=validation_level)
|
| 754 |
+
|
| 755 |
+
|
| 756 |
+
def validate_csv(file_path: str,
|
| 757 |
+
validation_level: ValidationLevel = ValidationLevel.MODERATE) -> BatchValidationResultSchema:
|
| 758 |
+
"""Validate articles from a CSV file"""
|
| 759 |
+
validator = DataValidationPipeline()
|
| 760 |
+
return validator.validate_csv_file(Path(file_path), validation_level)
|
| 761 |
+
|
| 762 |
+
|
| 763 |
+
def get_validation_stats() -> Dict[str, Any]:
|
| 764 |
+
"""Get current validation statistics"""
|
| 765 |
+
validator = DataValidationPipeline()
|
| 766 |
+
return validator.get_validation_statistics()
|
| 767 |
+
|
| 768 |
+
|
| 769 |
+
def generate_quality_report() -> Dict[str, Any]:
|
| 770 |
+
"""Generate quality report"""
|
| 771 |
+
validator = DataValidationPipeline()
|
| 772 |
+
return validator.generate_quality_report()
|