
BLIP paper summary

BLIP: Bootstrapping Language-Image Pre-training for Unified
Vision-Language Understanding and Generation

1. High-Level Brief

Introduction

The BLIP framework emerges as a significant advancement in the field of
Vision-Language Pre-training (VLP), addressing critical challenges faced by its
predecessors. Traditional VLP models often struggled with the integration of image
and language modalities, particularly in efficiently handling the noisy data sourced
from the web and being restricted to either understanding-based or generation-based
tasks. BLIP's innovative approach lies in its ability to bridge these gaps, offering a
more holistic and versatile solution to VLP.

BLIP's Contributions

BLIP introduces two key innovations that set it apart from existing methods:

● Multimodal Mixture of Encoder-Decoder (MED): This novel architecture is the
cornerstone of BLIP, enabling the model to adapt flexibly to a wide range of
tasks. Unlike traditional models that are typically confined to either
understanding or generation tasks, MED allows BLIP to excel in both. It
achieves this by functioning in multiple modes – as a unimodal encoder for
separate processing of image and text, an image-grounded text encoder for
integrating visual information into text encoding, and an image-grounded text
decoder for generating textual descriptions from images.

● Captioning and Filtering (CapFilt): Addressing the challenge of noisy web
data, BLIP incorporates CapFilt, a sophisticated data refinement process.
CapFilt enhances the quality of training data by generating synthetic captions
for images and then filtering out those that are noisy or less informative. This
process not only cleanses the dataset but also enriches it, contributing
significantly to the model’s training and subsequent performance.

BLIP's architecture and data processing strategy represent a substantial leap
forward in VLP, offering a more effective and efficient way to leverage the vast
amounts of web-sourced image-text pairs. The framework's ability to handle diverse



data and tasks positions it as a highly adaptable and robust solution in the realm of
multimodal AI.

2. Datasets Used

Overview of Datasets

BLIP's training leverages a comprehensive blend of datasets, each contributing
unique aspects to the model's development:

● Human-Annotated Datasets:
● COCO (Common Objects in Context)
● Visual Genome
● Web-Crawled Datasets:
● Conceptual Captions
● SBU Captions
● LAION Dataset

Purpose of Diverse Data

● Diversity and Scale: The combination of structured, human-annotated
datasets with the vast, unstructured web-crawled data ensures that BLIP is
exposed to a wide array of visual and linguistic contexts. This diversity is key
to developing a model capable of understanding and generating a broad
spectrum of human language and visual scenes.

● Quality and Challenge:While datasets like COCO and Visual Genome provide
high-quality, reliable annotations, web-crawled datasets introduce the
challenge of noisy, less reliable data. This mix allows BLIP to not only learn
from the best-available data but also to develop robustness against
lower-quality inputs, a common scenario in real-world applications.

● Real-World Applicability: By training on data that reflects a wide range of
real-world scenarios, BLIP is better equipped to handle practical applications
in various domains, making it a versatile and powerful tool in vision-language
tasks.

3. GPUs and Training Setup

Computational Resources

The training of the BLIP model was a computationally intensive task, demanding
significant hardware capabilities:



● GPU Configuration:
● The model was trained on two nodes, each equipped with 16GB

high-performance GPUs.

Training Strategy

BLIP's training strategy was carefully designed to maximize model performance and
efficiency:

● Training Parameters:
● Batch Size: Large batch sizes were used (2880 for ViT-B and 2400 for

ViT-L).
● Learning Rate: The model employed the AdamW optimizer with a

learning rate initially warmed-up to 3e-4 for ViT-B / 2e-4 for ViT-L,
followed by a linear decay. This strategy helped in stabilizing the
training initially and then fine-tuning the model weights effectively.

● Weight Decay: A weight decay of 0.05 was set to regularize the model
and prevent overfitting.

● Training Epochs:
● BLIP was trained for 20 epochs, ensuring sufficient exposure to the

diverse training data for robust learning while balancing the
computational costs.

● Image Resolution:
● During pre-training, random image crops of 224×224 resolution were

used, which were then increased to 384×384 during fine-tuning. This
change allowed the model to first learn from more general features and
then adapt to finer details for better performance.

Importance of Robust Training

The extensive GPU resources and the meticulously planned training strategy were
instrumental in developing BLIP. This robust training setup ensured that the model
could effectively learn from the diverse datasets, adapt to various tasks, and
ultimately perform at a state-of-the-art level across different vision-language
benchmarks.

4. Main Algorithms and Their Usage

Nucleus Sampling

● Purpose: Nucleus Sampling is employed for generating diverse synthetic
captions, which are crucial for training the BLIP model with varied and rich
language inputs.



● Process: It involves selecting the next word in a caption based on a
cumulative probability distribution, ensuring that the generated captions are
not just high probability but also diverse.

● Pseudo code for top-p or Nucleus sampling

function nucleus_sampling(token_probs, p_threshold):

sorted_probs, sorted_tokens = sort(token_probs, descending=True)

cumulative_probs = cumulative_sum(sorted_probs)

selected_tokens = sorted_tokens[cumulative_probs <= p_threshold]

return random_choice(selected_tokens)

Image-Text Contrastive Loss (ITC)

● Purpose: Used to align the feature space of visual and textual inputs, essential
for tasks like image-text retrieval.

● Method: It involves calculating similarities between image and text features
and using these for contrastive learning.

function itc_loss(image_features, text_features, temperature):

similarities = cosine_similarity(image_features, text_features) /

temperature

loss = contrastive_loss(similarities)

return loss

Image-Text Matching Loss (ITM)

● Purpose: This loss helps the model learn finer alignments between image and
text pairs, crucial for understanding the specific connections between visual
and textual elements.

● Implementation: The model predicts whether an image-text pair matches and
this prediction is used in a binary classification loss.

function itm_loss(image_text_pairs, labels):

predictions = model.predict(image_text_pairs)

loss = binary_cross_entropy(predictions, labels)

return loss

Language Modeling Loss (LM)



● Role: Used in the text decoding process, enabling the model to generate
coherent and contextually relevant textual descriptions from images.

● Approach: The model maximizes the likelihood of generating the correct next
word in a caption given an image.

function lm_loss(captions, model):

predictions = model.generate(captions)

loss = cross_entropy(predictions, captions)

return loss

Cross-Attention Mechanism

● Function: Allows the model to integrate and focus on relevant features from
both image and text modalities, enhancing the overall understanding and
generation capabilities.

● Mechanism: Involves computing attention weights between image and text
features and applying these to generate a combined representation.

function cross_attention(query, key, value):

attention_scores = softmax(matmul(query, key.T) / sqrt(size_of_key))

output = matmul(attention_scores, value)

return output

Multimodal Mixture of Encoder-Decoder (MED)

● Design: A versatile architecture that can function as an encoder, grounded
encoder, or grounded decoder, accommodating various types of
vision-language tasks.

● Structure: Combines different aspects of transformer-based models tailored
for both visual and textual processing.

class MED:

def __init__(self, image_encoder, text_encoder, text_decoder):

self.image_encoder = image_encoder

self.text_encoder = text_encoder

self.text_decoder = text_decoder

def forward(self, images, text, task_type):

if task_type == 'encode':

return self.text_encoder.encode(text),

self.image_encoder.encode(images)



elif task_type == 'grounded_encode':

return self.text_encoder.grounded_encode(text, images)

elif task_type == 'grounded_decode':

return self.text_decoder.decode(images)

Captioning and Filtering (CapFilt)

● Objective: To refine the training dataset by generating high-quality synthetic
captions and filtering out the noisy or irrelevant ones.

● Process: Uses a caption generator to create captions for images and a filter to
remove suboptimal captions, ensuring the data used for training is of high
quality.

function capfilt(images, captioner, filter):

synthetic_captions = captioner.generate_captions(images)

filtered_captions = filter.remove_noisy_captions(images,

synthetic_captions)

return filtered_captions

5. Conclusion and Total Pipeline

● Novel Architectural Approach: The introduction of the Multimodal Mixture of
Encoder-Decoder (MED) architecture has set new standards in flexibility and
efficiency for VLP tasks, enabling the model to adeptly handle both
understanding-based and generation-based tasks.

● Enhanced Data Quality with CapFilt: By implementing the Captioning and
Filtering process, BLIP effectively improves the quality of its training data, a
crucial factor in the success of any machine learning model. This approach
not only filters out noise but also enriches the dataset with diverse and
informative synthetic captions, leading to more robust learning.

● State-of-the-Art Performance: Across a range of vision-language tasks,
including image-text retrieval, image captioning, and visual question
answering, BLIP has demonstrated superior performance, thanks in part to its
ability to learn from a varied and extensive dataset.


