#!/usr/bin/env python3 from doctest import OutputChecker import sys import torch import re import os import gradio as gr import requests #url = "https://github.com/simonepri/lm-scorer/tree/master/lm_scorer/models" #resp = requests.get(url) from sentence_transformers import SentenceTransformer, util #from sentence_transformers import SentenceTransformer, util #from sklearn.metrics.pairwise import cosine_similarity #from lm_scorer.models.auto import AutoLMScorer as LMScorer #from sentence_transformers import SentenceTransformer, util #from sklearn.metrics.pairwise import cosine_similarity #device = "cuda:0" if torch.cuda.is_available() else "cpu" #model_sts = gr.Interface.load('huggingface/sentence-transformers/stsb-distilbert-base') #model_sts = SentenceTransformer('stsb-distilbert-base') model_sts = SentenceTransformer('roberta-large-nli-stsb-mean-tokens') #batch_size = 1 #scorer = LMScorer.from_pretrained('gpt2' , device=device, batch_size=batch_size) #import torch from transformers import GPT2Tokenizer, GPT2LMHeadModel import numpy as np import re def Sort_Tuple(tup): # (Sorts in descending order) tup.sort(key = lambda x: x[1]) return tup[::-1] def softmax(x): exps = np.exp(x) return np.divide(exps, np.sum(exps)) def get_sim(x): x = str(x)[1:-1] x = str(x)[1:-1] return x # Load pre-trained model model = GPT2LMHeadModel.from_pretrained('gpt2', output_hidden_states = True, output_attentions = True) #model = gr.Interface.load('huggingface/distilgpt2', output_hidden_states = True, output_attentions = True) #model.eval() #tokenizer = gr.Interface.load('huggingface/distilgpt2') tokenizer = GPT2Tokenizer.from_pretrained('gpt2') #tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2') def cloze_prob(text): whole_text_encoding = tokenizer.encode(text) # Parse out the stem of the whole sentence (i.e., the part leading up to but not including the critical word) text_list = text.split() stem = ' '.join(text_list[:-1]) stem_encoding = tokenizer.encode(stem) # cw_encoding is just the difference between whole_text_encoding and stem_encoding # note: this might not correspond exactly to the word itself cw_encoding = whole_text_encoding[len(stem_encoding):] # Run the entire sentence through the model. Then go "back in time" to look at what the model predicted for each token, starting at the stem. # Put the whole text encoding into a tensor, and get the model's comprehensive output tokens_tensor = torch.tensor([whole_text_encoding]) with torch.no_grad(): outputs = model(tokens_tensor) predictions = outputs[0] logprobs = [] # start at the stem and get downstream probabilities incrementally from the model(see above) start = -1-len(cw_encoding) for j in range(start,-1,1): raw_output = [] for i in predictions[-1][j]: raw_output.append(i.item()) logprobs.append(np.log(softmax(raw_output))) # if the critical word is three tokens long, the raw_probabilities should look something like this: # [ [0.412, 0.001, ... ] ,[0.213, 0.004, ...], [0.002,0.001, 0.93 ...]] # Then for the i'th token we want to find its associated probability # this is just: raw_probabilities[i][token_index] conditional_probs = [] for cw,prob in zip(cw_encoding,logprobs): conditional_probs.append(prob[cw]) # now that you have all the relevant probabilities, return their product. # This is the probability of the critical word given the context before it. return np.exp(np.sum(conditional_probs)) def cos_sim(a, b): return np.inner(a, b) / (np.linalg.norm(a) * (np.linalg.norm(b))) def Visual_re_ranker(caption_G, caption_B, caption_VR, visual_context_label, visual_context_prob): caption_G = caption_G caption_B = caption_B caption_VR = caption_VR visual_context_label= visual_context_label visual_context_prob = visual_context_prob caption_emb_G = model_sts.encode(caption_G, convert_to_tensor=True) caption_emb_B = model_sts.encode(caption_B, convert_to_tensor=True) caption_emb_VR = model_sts.encode(caption_VR, convert_to_tensor=True) visual_context_label_emb = model_sts.encode(visual_context_label, convert_to_tensor=True) sim_1 = cosine_scores = util.pytorch_cos_sim(caption_emb_G, visual_context_label_emb) sim_1 = sim_1.cpu().numpy() sim_1 = get_sim(sim_1) sim_2 = cosine_scores = util.pytorch_cos_sim(caption_emb_B, visual_context_label_emb) sim_2 = sim_2.cpu().numpy() sim_2 = get_sim(sim_2) sim_3 = cosine_scores = util.pytorch_cos_sim(caption_emb_VR, visual_context_label_emb) sim_3 = sim_3.cpu().numpy() sim_3 = get_sim(sim_3) LM_1 = cloze_prob(caption_G) LM_2 = cloze_prob(caption_B) LM_3 = cloze_prob(caption_VR) #LM = scorer.sentence_score(caption, reduce="mean") score_1 = pow(float(LM_1),pow((1-float(sim_1))/(1+ float(sim_1)),1-float(visual_context_prob))) score_2 = pow(float(LM_2),pow((1-float(sim_2))/(1+ float(sim_2)),1-float(visual_context_prob))) score_3 = pow(float(LM_3),pow((1-float(sim_3))/(1+ float(sim_3)),1-float(visual_context_prob))) #return {"LM": float(LM)/1, "sim": float(sim)/1, "score": float(score)/1 } return {"Greedy": float(score_1)/1, "Best-Beam-5": float(score_2)/1, "Visual_re-Ranker": float(score_3)/1 } #return LM, sim, score demo = gr.Interface( fn=Visual_re_ranker, #description="Demo for Belief Revision based Caption Re-ranker with Visual Semantic Information", description="Demo for Caption Re-ranker with Visual Semantic Information", #inputs=[gr.Textbox(value="a city street filled with traffic at night") , gr.Textbox(value="traffic"), gr.Textbox(value="0.7458009")], # a baby is eating in front of a birthday cake /a baby sitting in front of a giant cake inputs=[gr.Textbox(value="baby is eating in front of a birthday cake") , gr.Textbox(value="a baby sitting in front of a cake"), gr.Textbox(value="a baby sitting in front of a birthday cake"), gr.Textbox(value="candle wax light"), gr.Textbox(value="0.958")], #outputs=[gr.Textbox(value="Language Model Score") , gr.Textbox(value="Semantic Similarity Score"), gr.Textbox(value="Belief revision score via visual context")], outputs="label", ) demo.launch()