#!/usr/bin/env python3 # from doctest import OutputChecker # import sys # import torch # import re # import os # import gradio as gr # import requests # from doctest import OutputChecker # import sys # import torch # import re # import os # import gradio as gr # import requests # import torch # from transformers import GPT2Tokenizer, GPT2LMHeadModel # from torch.nn.functional import softmax # import numpy as np # from huggingface_hub import login #!/usr/bin/env python3 from doctest import OutputChecker import sys import torch import re import os import gradio as gr import requests import torch from torch.nn.functional import softmax import numpy as np from transformers import AutoTokenizer, AutoModelForCausalLM #from torch.nn.functional import softmax from huggingface_hub import login #url = "https://github.com/simonepri/lm-scorer/tree/master/lm_scorer/models" #resp = requests.get(url) from sentence_transformers import SentenceTransformer, util #model_sts = SentenceTransformer('stsb-distilbert-base') model_sts = SentenceTransformer('roberta-large-nli-stsb-mean-tokens') #batch_size = 1 #scorer = LMScorer.from_pretrained('gpt2' , device=device, batch_size=batch_size) #import torch from transformers import GPT2Tokenizer, GPT2LMHeadModel import numpy as np import re def get_sim(x): x = str(x)[1:-1] x = str(x)[1:-1] return x import os #print(os.getenv('HF_token')) hf_api_token = os.getenv("HF_token") # For sensitive secrets #app_mode = os.getenv("APP_MODE") # For public variables access_token = hf_api_token print(login(token = access_token)) tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B") model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-1B") #tokenizer = GPT2Tokenizer.from_pretrained('gpt2') #model = GPT2LMHeadModel.from_pretrained('gpt2') def sentence_prob_mean(text): # Tokenize the input text and add special tokens input_ids = tokenizer.encode(text, return_tensors='pt') # Obtain model outputs with torch.no_grad(): outputs = model(input_ids, labels=input_ids) logits = outputs.logits # logits are the model outputs before applying softmax # Shift logits and labels so that tokens are aligned: shift_logits = logits[..., :-1, :].contiguous() shift_labels = input_ids[..., 1:].contiguous() # Calculate the softmax probabilities probs = softmax(shift_logits, dim=-1) # Gather the probabilities of the actual token IDs gathered_probs = torch.gather(probs, 2, shift_labels.unsqueeze(-1)).squeeze(-1) # Compute the mean probability across the tokens mean_prob = torch.mean(gathered_probs).item() return mean_prob def cos_sim(a, b): return np.inner(a, b) / (np.linalg.norm(a) * (np.linalg.norm(b))) def Visual_re_ranker(caption_G, caption_B, caption_VR, visual_context_label, visual_context_prob): caption_G = caption_G caption_B = caption_B caption_VR = caption_VR visual_context_label= visual_context_label visual_context_prob = visual_context_prob caption_emb_G = model_sts.encode(caption_G, convert_to_tensor=True) caption_emb_B = model_sts.encode(caption_B, convert_to_tensor=True) caption_emb_VR = model_sts.encode(caption_VR, convert_to_tensor=True) visual_context_label_emb = model_sts.encode(visual_context_label, convert_to_tensor=True) sim_1 = cosine_scores = util.pytorch_cos_sim(caption_emb_G, visual_context_label_emb) sim_1 = sim_1.cpu().numpy() sim_1 = get_sim(sim_1) sim_2 = cosine_scores = util.pytorch_cos_sim(caption_emb_B, visual_context_label_emb) sim_2 = sim_2.cpu().numpy() sim_2 = get_sim(sim_2) sim_3 = cosine_scores = util.pytorch_cos_sim(caption_emb_VR, visual_context_label_emb) sim_3 = sim_3.cpu().numpy() sim_3 = get_sim(sim_3) LM_1 = sentence_prob_mean(caption_G) LM_2 = sentence_prob_mean(caption_B) LM_3 = sentence_prob_mean(caption_VR) #LM = scorer.sentence_score(caption, reduce="mean") score_1 = pow(float(LM_1),pow((1-float(sim_1))/(1+ float(sim_1)),1-float(visual_context_prob))) score_2 = pow(float(LM_2),pow((1-float(sim_2))/(1+ float(sim_2)),1-float(visual_context_prob))) score_3 = pow(float(LM_3),pow((1-float(sim_3))/(1+ float(sim_3)),1-float(visual_context_prob))) #return {"LM": float(LM)/1, "sim": float(sim)/1, "score": float(score)/1 } return {"Greedy": float(score_1)/1, "Best-Beam-5": float(score_2)/1, "Visual_re-Ranker": float(score_3)/1 } #return LM, sim, score demo = gr.Interface( fn=Visual_re_ranker, #description="Demo for Belief Revision based Caption Re-ranker with Visual Semantic Information", description="Demo for Caption Re-ranker with Visual Semantic Information", #inputs=[gr.Textbox(value="a city street filled with traffic at night") , gr.Textbox(value="traffic"), gr.Textbox(value="0.7458009")], # a baby is eating in front of a birthday cake /a baby sitting in front of a giant cake inputs=[gr.Textbox(value="baby is eating in front of a birthday cake") , gr.Textbox(value="a baby sitting in front of a cake"), gr.Textbox(value="a baby sitting in front of a birthday cake"), gr.Textbox(value="candle wax light"), gr.Textbox(value="0.958")], #outputs=[gr.Textbox(value="Language Model Score") , gr.Textbox(value="Semantic Similarity Score"), gr.Textbox(value="Belief revision score via visual context")], outputs="label", ) demo.launch()