import os import copy import torch import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms from PIL import Image from CaffeLoader import loadCaffemodel, ModelParallel import argparse parser = argparse.ArgumentParser() # Basic options parser.add_argument("-style_image", help="Style target image", default='examples/inputs/seated-nude.jpg') parser.add_argument("-style_blend_weights", default=None) parser.add_argument("-content_image", help="Content target image", default='examples/inputs/tubingen.jpg') parser.add_argument("-image_size", help="Maximum height / width of generated image", type=int, default=512) parser.add_argument("-gpu", help="Zero-indexed ID of the GPU to use; for CPU mode set -gpu = c", default=0) # Optimization options parser.add_argument("-content_weight", type=float, default=5e0) parser.add_argument("-style_weight", type=float, default=1e2) parser.add_argument("-normalize_weights", action='store_true') parser.add_argument("-tv_weight", type=float, default=1e-3) parser.add_argument("-num_iterations", type=int, default=1000) parser.add_argument("-init", choices=['random', 'image'], default='random') parser.add_argument("-init_image", default=None) parser.add_argument("-optimizer", choices=['lbfgs', 'adam'], default='lbfgs') parser.add_argument("-learning_rate", type=float, default=1e0) parser.add_argument("-lbfgs_num_correction", type=int, default=100) # Output options parser.add_argument("-print_iter", type=int, default=50) parser.add_argument("-save_iter", type=int, default=100) parser.add_argument("-output_image", default='out.png') # Other options parser.add_argument("-style_scale", type=float, default=1.0) parser.add_argument("-original_colors", type=int, choices=[0, 1], default=0) parser.add_argument("-pooling", choices=['avg', 'max'], default='max') parser.add_argument("-model_file", type=str, default='models/vgg19-d01eb7cb.pth') parser.add_argument("-disable_check", action='store_true') parser.add_argument("-backend", choices=['nn', 'cudnn', 'mkl', 'mkldnn', 'openmp', 'mkl,cudnn', 'cudnn,mkl'], default='nn') parser.add_argument("-cudnn_autotune", action='store_true') parser.add_argument("-seed", type=int, default=-1) parser.add_argument("-content_layers", help="layers for content", default='relu4_2') parser.add_argument("-style_layers", help="layers for style", default='relu1_1,relu2_1,relu3_1,relu4_1,relu5_1') parser.add_argument("-multidevice_strategy", default='4,7,29') params = parser.parse_args() Image.MAX_IMAGE_PIXELS = 1000000000 # Support gigapixel images class TransferParams(): style_image = 'examples/inputs/seated-nude.jpg' style_blend_weights = None content_image = 'examples/inputs/tubingen.jpg' image_size = 512 gpu = "c" content_weight = 5e0 style_weight = 1e2 normalize_weights = False tv_weight = 1e-3 num_iterations = 1000 init = 'random' init_image = None optimizer = 'lbfgs' learning_rate = 1e0 lbfgs_num_correction = 100 print_iter = 50 save_iter = 1000 output_image = 'out.png' log_level = 10 style_scale = 1.0 original_colors = 0 pooling = 'max' model_file = 'models/vgg19-d01eb7cb.pth' disable_check = False backend = 'mkl' cudnn_autotune = False seed = -1 content_layers = 'relu4_2' style_layers = 'relu1_1,relu2_1,relu3_1,relu4_1,relu5_1' multidevice_strategy = '4,7,29' def main(): transfer(params) def transfer(params): dtype, multidevice, backward_device = setup_gpu() print(dtype) cnn, layerList = loadCaffemodel(params.model_file, params.pooling, params.gpu, params.disable_check) content_image = preprocess(params.content_image, params.image_size).type(dtype) style_image_input = params.style_image.split(',') style_image_list, ext = [], [".jpg", ".jpeg", ".png", ".tiff"] for image in style_image_input: if os.path.isdir(image): images = (image + "/" + file for file in os.listdir(image) if os.path.splitext(file)[1].lower() in ext) style_image_list.extend(images) else: style_image_list.append(image) style_images_caffe = [] for image in style_image_list: style_size = int(params.image_size * params.style_scale) img_caffe = preprocess(image, style_size).type(dtype) style_images_caffe.append(img_caffe) if params.init_image != None: image_size = (content_image.size(2), content_image.size(3)) init_image = preprocess(params.init_image, image_size).type(dtype) # Handle style blending weights for multiple style inputs style_blend_weights = [] if params.style_blend_weights == None: # Style blending not specified, so use equal weighting for i in style_image_list: style_blend_weights.append(1.0) for i, blend_weights in enumerate(style_blend_weights): style_blend_weights[i] = int(style_blend_weights[i]) else: style_blend_weights = params.style_blend_weights.split(',') assert len(style_blend_weights) == len(style_image_list), \ "-style_blend_weights and -style_images must have the same number of elements!" # Normalize the style blending weights so they sum to 1 style_blend_sum = 0 for i, blend_weights in enumerate(style_blend_weights): style_blend_weights[i] = float(style_blend_weights[i]) style_blend_sum = float(style_blend_sum) + style_blend_weights[i] for i, blend_weights in enumerate(style_blend_weights): style_blend_weights[i] = float(style_blend_weights[i]) / float(style_blend_sum) content_layers = params.content_layers.split(',') style_layers = params.style_layers.split(',') # Set up the network, inserting style and content loss modules cnn = copy.deepcopy(cnn) content_losses, style_losses, tv_losses = [], [], [] next_content_idx, next_style_idx = 1, 1 net = nn.Sequential() c, r = 0, 0 if params.tv_weight > 0: tv_mod = TVLoss(params.tv_weight).type(dtype) net.add_module(str(len(net)), tv_mod) tv_losses.append(tv_mod) for i, layer in enumerate(list(cnn), 1): if next_content_idx <= len(content_layers) or next_style_idx <= len(style_layers): if isinstance(layer, nn.Conv2d): net.add_module(str(len(net)), layer) if layerList['C'][c] in content_layers: print("Setting up content layer " + str(i) + ": " + str(layerList['C'][c])) loss_module = ContentLoss(params.content_weight) net.add_module(str(len(net)), loss_module) content_losses.append(loss_module) if layerList['C'][c] in style_layers: print("Setting up style layer " + str(i) + ": " + str(layerList['C'][c])) loss_module = StyleLoss(params.style_weight) net.add_module(str(len(net)), loss_module) style_losses.append(loss_module) c+=1 if isinstance(layer, nn.ReLU): net.add_module(str(len(net)), layer) if layerList['R'][r] in content_layers: print("Setting up content layer " + str(i) + ": " + str(layerList['R'][r])) loss_module = ContentLoss(params.content_weight) net.add_module(str(len(net)), loss_module) content_losses.append(loss_module) next_content_idx += 1 if layerList['R'][r] in style_layers: print("Setting up style layer " + str(i) + ": " + str(layerList['R'][r])) loss_module = StyleLoss(params.style_weight) net.add_module(str(len(net)), loss_module) style_losses.append(loss_module) next_style_idx += 1 r+=1 if isinstance(layer, nn.MaxPool2d) or isinstance(layer, nn.AvgPool2d): net.add_module(str(len(net)), layer) if multidevice: net = setup_multi_device(net) # Capture content targets for i in content_losses: i.mode = 'capture' print("Capturing content targets") print_torch(net, multidevice) net(content_image) # Capture style targets for i in content_losses: i.mode = 'None' for i, image in enumerate(style_images_caffe): print("Capturing style target " + str(i+1)) for j in style_losses: j.mode = 'capture' j.blend_weight = style_blend_weights[i] net(style_images_caffe[i]) # Set all loss modules to loss mode for i in content_losses: i.mode = 'loss' for i in style_losses: i.mode = 'loss' # Maybe normalize content and style weights if params.normalize_weights: normalize_weights(content_losses, style_losses) # Freeze the network in order to prevent # unnecessary gradient calculations for param in net.parameters(): param.requires_grad = False # Initialize the image if params.seed >= 0: torch.manual_seed(params.seed) torch.cuda.manual_seed_all(params.seed) torch.backends.cudnn.deterministic=True if params.init == 'random': B, C, H, W = content_image.size() img = torch.randn(C, H, W).mul(0.001).unsqueeze(0).type(dtype) elif params.init == 'image': if params.init_image != None: img = init_image.clone() else: img = content_image.clone() img = nn.Parameter(img) def maybe_print(t, loss): if params.print_iter > 0 and t % params.print_iter == 0: print("Iteration " + str(t) + " / "+ str(params.num_iterations)) for i, loss_module in enumerate(content_losses): print(" Content " + str(i+1) + " loss: " + str(loss_module.loss.item())) for i, loss_module in enumerate(style_losses): print(" Style " + str(i+1) + " loss: " + str(loss_module.loss.item())) print(" Total loss: " + str(loss.item())) final_image = '' def maybe_save(t): should_save = params.save_iter > 950 and t % params.save_iter == 0 should_save = should_save or t == params.num_iterations if should_save: output_filename, file_extension = os.path.splitext(params.output_image) if t == params.num_iterations: filename = output_filename + str(file_extension) else: filename = str(output_filename) + "_" + str(t) + str(file_extension) disp = deprocess(img.clone()) # Maybe perform postprocessing for color-independent style transfer if params.original_colors == 1: disp = original_colors(deprocess(content_image.clone()), disp) print('Saving') disp.save(str(filename)) print('the final image is:', disp) final_image = disp return disp # Function to evaluate loss and gradient. We run the net forward and # backward to get the gradient, and sum up losses from the loss modules. # optim.lbfgs internally handles iteration and calls this function many # times, so we manually count the number of iterations to handle printing # and saving intermediate results. num_calls = [0] def feval(): num_calls[0] += 1 optimizer.zero_grad() net(img) loss = 0 for mod in content_losses: loss += mod.loss.to(backward_device) for mod in style_losses: loss += mod.loss.to(backward_device) if params.tv_weight > 0: for mod in tv_losses: loss += mod.loss.to(backward_device) loss.backward() final_image = maybe_save(num_calls[0]) maybe_print(num_calls[0], loss) return loss print('the final image is', final_image) optimizer, loopVal = setup_optimizer(img) while num_calls[0] <= loopVal: optimizer.step(feval) # Configure the optimizer def setup_optimizer(img): if params.optimizer == 'lbfgs': print("Running optimization with L-BFGS") optim_state = { 'max_iter': params.num_iterations, 'tolerance_change': -1, 'tolerance_grad': -1, } if params.lbfgs_num_correction != 100: optim_state['history_size'] = params.lbfgs_num_correction optimizer = optim.LBFGS([img], **optim_state) loopVal = 1 elif params.optimizer == 'adam': print("Running optimization with ADAM") optimizer = optim.Adam([img], lr = params.learning_rate) loopVal = params.num_iterations - 1 return optimizer, loopVal def setup_gpu(): def setup_cuda(): if 'cudnn' in params.backend: torch.backends.cudnn.enabled = True if params.cudnn_autotune: torch.backends.cudnn.benchmark = True else: torch.backends.cudnn.enabled = False def setup_cpu(): if 'mkl' in params.backend and 'mkldnn' not in params.backend: torch.backends.mkl.enabled = True elif 'mkldnn' in params.backend: raise ValueError("MKL-DNN is not supported yet.") elif 'openmp' in params.backend: torch.backends.openmp.enabled = True multidevice = False if "," in str(params.gpu): devices = params.gpu.split(',') multidevice = True if 'c' in str(devices[0]).lower(): backward_device = "cpu" setup_cuda(), setup_cpu() else: backward_device = "cuda:" + devices[0] setup_cuda() dtype = torch.FloatTensor #elif "c" not in str(params.gpu).lower(): #setup_cuda() #dtype, backward_device = torch.cuda.FloatTensor, "cuda:" + str(params.gpu) else: setup_cpu() dtype, backward_device = torch.FloatTensor, "cpu" return dtype, multidevice, backward_device def setup_multi_device(net): assert len(params.gpu.split(',')) - 1 == len(params.multidevice_strategy.split(',')), \ "The number of -multidevice_strategy layer indices minus 1, must be equal to the number of -gpu devices." new_net = ModelParallel(net, params.gpu, params.multidevice_strategy) return new_net # Preprocess an image before passing it to a model. # We need to rescale from [0, 1] to [0, 255], convert from RGB to BGR, # and subtract the mean pixel. def preprocess(image_name, image_size): image = Image.open(image_name).convert('RGB') if type(image_size) is not tuple: image_size = tuple([int((float(image_size) / max(image.size))*x) for x in (image.height, image.width)]) Loader = transforms.Compose([transforms.Resize(image_size), transforms.ToTensor()]) rgb2bgr = transforms.Compose([transforms.Lambda(lambda x: x[torch.LongTensor([2,1,0])])]) Normalize = transforms.Compose([transforms.Normalize(mean=[103.939, 116.779, 123.68], std=[1,1,1])]) tensor = Normalize(rgb2bgr(Loader(image) * 256)).unsqueeze(0) return tensor # Undo the above preprocessing. def deprocess(output_tensor): Normalize = transforms.Compose([transforms.Normalize(mean=[-103.939, -116.779, -123.68], std=[1,1,1])]) bgr2rgb = transforms.Compose([transforms.Lambda(lambda x: x[torch.LongTensor([2,1,0])])]) output_tensor = bgr2rgb(Normalize(output_tensor.squeeze(0).cpu())) / 256 output_tensor.clamp_(0, 1) Image2PIL = transforms.ToPILImage() image = Image2PIL(output_tensor.cpu()) return image # Combine the Y channel of the generated image and the UV/CbCr channels of the # content image to perform color-independent style transfer. def original_colors(content, generated): content_channels = list(content.convert('YCbCr').split()) generated_channels = list(generated.convert('YCbCr').split()) content_channels[0] = generated_channels[0] return Image.merge('YCbCr', content_channels).convert('RGB') # Print like Lua/Torch7 def print_torch(net, multidevice): if multidevice: return simplelist = "" for i, layer in enumerate(net, 1): simplelist = simplelist + "(" + str(i) + ") -> " print("nn.Sequential ( \n [input -> " + simplelist + "output]") def strip(x): return str(x).replace(", ",',').replace("(",'').replace(")",'') + ", " def n(): return " (" + str(i) + "): " + "nn." + str(l).split("(", 1)[0] for i, l in enumerate(net, 1): if "2d" in str(l): ks, st, pd = strip(l.kernel_size), strip(l.stride), strip(l.padding) if "Conv2d" in str(l): ch = str(l.in_channels) + " -> " + str(l.out_channels) print(n() + "(" + ch + ", " + (ks).replace(",",'x', 1) + st + pd.replace(", ",')')) elif "Pool2d" in str(l): st = st.replace(" ",' ') + st.replace(", ",')') print(n() + "(" + ((ks).replace(",",'x' + ks, 1) + st).replace(", ",',')) else: print(n()) print(")") # Divide weights by channel size def normalize_weights(content_losses, style_losses): for n, i in enumerate(content_losses): i.strength = i.strength / max(i.target.size()) for n, i in enumerate(style_losses): i.strength = i.strength / max(i.target.size()) # Define an nn Module to compute content loss class ContentLoss(nn.Module): def __init__(self, strength): super(ContentLoss, self).__init__() self.strength = strength self.crit = nn.MSELoss() self.mode = 'None' def forward(self, input): if self.mode == 'loss': self.loss = self.crit(input, self.target) * self.strength elif self.mode == 'capture': self.target = input.detach() return input class GramMatrix(nn.Module): def forward(self, input): B, C, H, W = input.size() x_flat = input.view(C, H * W) return torch.mm(x_flat, x_flat.t()) # Define an nn Module to compute style loss class StyleLoss(nn.Module): def __init__(self, strength): super(StyleLoss, self).__init__() self.target = torch.Tensor() self.strength = strength self.gram = GramMatrix() self.crit = nn.MSELoss() self.mode = 'None' self.blend_weight = None def forward(self, input): self.G = self.gram(input) self.G = self.G.div(input.nelement()) if self.mode == 'capture': if self.blend_weight == None: self.target = self.G.detach() elif self.target.nelement() == 0: self.target = self.G.detach().mul(self.blend_weight) else: self.target = self.target.add(self.blend_weight, self.G.detach()) elif self.mode == 'loss': self.loss = self.strength * self.crit(self.G, self.target) return input class TVLoss(nn.Module): def __init__(self, strength): super(TVLoss, self).__init__() self.strength = strength def forward(self, input): self.x_diff = input[:,:,1:,:] - input[:,:,:-1,:] self.y_diff = input[:,:,:,1:] - input[:,:,:,:-1] self.loss = self.strength * (torch.sum(torch.abs(self.x_diff)) + torch.sum(torch.abs(self.y_diff))) return input if __name__ == "__main__": main()