capradeepgujaran
commited on
Commit
•
771e08a
1
Parent(s):
46e12d1
Update app.py
Browse files
app.py
CHANGED
@@ -8,20 +8,94 @@ import io
|
|
8 |
import os
|
9 |
import base64
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
if frame is None:
|
23 |
-
return "No frame received"
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
25 |
frame = self.preprocess_image(frame)
|
26 |
image_url = self.encode_image(frame)
|
27 |
|
@@ -34,32 +108,23 @@ def create_monitor_interface():
|
|
34 |
"content": [
|
35 |
{
|
36 |
"type": "text",
|
37 |
-
"text": """Analyze this image for safety
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
-
|
50 |
-
-
|
51 |
-
-
|
52 |
-
-
|
53 |
-
|
54 |
-
- Chemical safety
|
55 |
-
- Fall protection
|
56 |
-
- Material handling
|
57 |
-
- Access/egress issues
|
58 |
-
- Housekeeping
|
59 |
-
- Tool safety
|
60 |
-
- Emergency equipment
|
61 |
-
|
62 |
-
Be specific about locations and provide detailed observations."""
|
63 |
},
|
64 |
{
|
65 |
"type": "image_url",
|
@@ -74,154 +139,123 @@ Be specific about locations and provide detailed observations."""
|
|
74 |
max_tokens=500,
|
75 |
stream=False
|
76 |
)
|
77 |
-
return completion.choices[0].message.content
|
78 |
except Exception as e:
|
79 |
print(f"Analysis error: {str(e)}")
|
80 |
-
return f"Analysis Error: {str(e)}"
|
81 |
-
|
82 |
-
def preprocess_image(self, frame):
|
83 |
-
"""Prepare image for analysis."""
|
84 |
-
if len(frame.shape) == 2:
|
85 |
-
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
|
86 |
-
elif len(frame.shape) == 3 and frame.shape[2] == 4:
|
87 |
-
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
|
88 |
-
|
89 |
-
return self.resize_image(frame)
|
90 |
-
|
91 |
-
def resize_image(self, image):
|
92 |
-
"""Resize image while maintaining aspect ratio."""
|
93 |
-
height, width = image.shape[:2]
|
94 |
-
if height > self.max_image_size[1] or width > self.max_image_size[0]:
|
95 |
-
aspect = width / height
|
96 |
-
if width > height:
|
97 |
-
new_width = self.max_image_size[0]
|
98 |
-
new_height = int(new_width / aspect)
|
99 |
-
else:
|
100 |
-
new_height = self.max_image_size[1]
|
101 |
-
new_width = int(new_height * aspect)
|
102 |
-
return cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)
|
103 |
-
return image
|
104 |
|
105 |
-
def
|
106 |
-
"""
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
'right': (0.7, 0.2, 1, 0.8),
|
121 |
-
'center': (0.3, 0.3, 0.7, 0.7),
|
122 |
-
'top-left': (0, 0, 0.3, 0.3),
|
123 |
-
'top-right': (0.7, 0, 1, 0.3),
|
124 |
-
'bottom-left': (0, 0.7, 0.3, 1),
|
125 |
-
'bottom-right': (0.7, 0.7, 1, 1),
|
126 |
-
'workspace': (0.2, 0.2, 0.8, 0.8),
|
127 |
-
'near-machine': (0.6, 0.1, 1, 0.9),
|
128 |
-
'floor-area': (0, 0.7, 1, 1),
|
129 |
-
'equipment': (0.5, 0.1, 1, 0.9)
|
130 |
-
}
|
131 |
-
|
132 |
-
# Find best matching location
|
133 |
-
text = observation.lower()
|
134 |
-
best_match = 'center'
|
135 |
-
max_match = 0
|
136 |
|
137 |
-
for
|
138 |
-
|
139 |
-
|
140 |
-
matches = sum(1 for word in words if word in text)
|
141 |
-
if matches > max_match:
|
142 |
-
max_match = matches
|
143 |
-
best_match = loc
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
height, width = image.shape[:2]
|
150 |
font = cv2.FONT_HERSHEY_SIMPLEX
|
151 |
font_scale = 0.5
|
152 |
thickness = 2
|
153 |
padding = 10
|
154 |
-
|
155 |
for idx, obs in enumerate(observations):
|
156 |
color = self.colors[idx % len(self.colors)]
|
157 |
|
158 |
-
#
|
159 |
-
|
160 |
-
x1 =
|
161 |
-
y1 = int(rel_coords[1] * height)
|
162 |
-
x2 = int(rel_coords[2] * width)
|
163 |
-
y2 = int(rel_coords[3] * height)
|
164 |
|
165 |
-
# Draw
|
166 |
cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
|
167 |
|
168 |
-
#
|
169 |
-
label = obs['description'][:50]
|
170 |
-
if len(obs['description']) > 50:
|
171 |
-
label += "..."
|
172 |
-
|
173 |
-
# Calculate text position
|
174 |
label_size, _ = cv2.getTextSize(label, font, font_scale, thickness)
|
|
|
|
|
175 |
text_x = max(0, x1)
|
176 |
text_y = max(label_size[1] + padding, y1 - padding)
|
177 |
|
178 |
-
# Draw
|
179 |
cv2.rectangle(image,
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
|
184 |
-
# Draw
|
185 |
cv2.putText(image, label,
|
186 |
(text_x + padding//2, text_y - padding//2),
|
187 |
font, font_scale, (255, 255, 255), thickness)
|
188 |
|
189 |
-
return image
|
190 |
|
191 |
def process_frame(self, frame: np.ndarray) -> tuple[np.ndarray, str]:
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
return display_frame, analysis
|
223 |
|
224 |
-
|
225 |
monitor = SafetyMonitor()
|
226 |
|
227 |
with gr.Blocks() as demo:
|
@@ -252,11 +286,13 @@ Be specific about locations and provide detailed observations."""
|
|
252 |
gr.Markdown("""
|
253 |
## Instructions:
|
254 |
1. Upload any workplace/safety-related image
|
255 |
-
2. View identified hazards and
|
256 |
-
3.
|
257 |
""")
|
258 |
|
259 |
return demo
|
260 |
|
261 |
-
|
262 |
-
demo
|
|
|
|
|
|
8 |
import os
|
9 |
import base64
|
10 |
|
11 |
+
class SafetyMonitor:
|
12 |
+
def __init__(self):
|
13 |
+
self.client = Groq()
|
14 |
+
self.model_name = "llama-3.2-90b-vision-preview"
|
15 |
+
self.max_image_size = (800, 800)
|
16 |
+
self.colors = [(0, 0, 255), (255, 0, 0), (0, 255, 0), (255, 255, 0), (255, 0, 255)]
|
17 |
+
|
18 |
+
def preprocess_image(self, frame):
|
19 |
+
"""Prepare image for analysis."""
|
20 |
+
if len(frame.shape) == 2:
|
21 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
|
22 |
+
elif len(frame.shape) == 3 and frame.shape[2] == 4:
|
23 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
|
24 |
+
|
25 |
+
return self.resize_image(frame)
|
26 |
+
|
27 |
+
def resize_image(self, image):
|
28 |
+
"""Resize image while maintaining aspect ratio."""
|
29 |
+
height, width = image.shape[:2]
|
30 |
+
if height > self.max_image_size[1] or width > self.max_image_size[0]:
|
31 |
+
aspect = width / height
|
32 |
+
if width > height:
|
33 |
+
new_width = self.max_image_size[0]
|
34 |
+
new_height = int(new_width / aspect)
|
35 |
+
else:
|
36 |
+
new_height = self.max_image_size[1]
|
37 |
+
new_width = int(new_height * aspect)
|
38 |
+
return cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)
|
39 |
+
return image
|
40 |
+
|
41 |
+
def encode_image(self, frame):
|
42 |
+
"""Convert image to base64 encoding."""
|
43 |
+
frame_pil = PILImage.fromarray(frame)
|
44 |
+
buffered = io.BytesIO()
|
45 |
+
frame_pil.save(buffered, format="JPEG", quality=95)
|
46 |
+
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
47 |
+
return f"data:image/jpeg;base64,{img_base64}"
|
48 |
|
49 |
+
def get_scene_context(self, image: np.ndarray) -> str:
|
50 |
+
"""Get scene understanding to determine context."""
|
51 |
+
try:
|
52 |
+
image_url = self.encode_image(image)
|
53 |
+
completion = self.client.chat.completions.create(
|
54 |
+
model=self.model_name,
|
55 |
+
messages=[
|
56 |
+
{
|
57 |
+
"role": "user",
|
58 |
+
"content": [
|
59 |
+
{
|
60 |
+
"type": "text",
|
61 |
+
"text": """Describe the key areas and elements visible in this construction/workplace image. Include:
|
62 |
+
1. Worker locations and activities
|
63 |
+
2. Equipment and machinery positions
|
64 |
+
3. Material storage or work areas
|
65 |
+
4. Environmental features
|
66 |
+
5. Access ways and pathways
|
67 |
+
|
68 |
+
Format as:
|
69 |
+
- Element: precise location description"""
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"type": "image_url",
|
73 |
+
"image_url": {
|
74 |
+
"url": image_url
|
75 |
+
}
|
76 |
+
}
|
77 |
+
]
|
78 |
+
}
|
79 |
+
],
|
80 |
+
temperature=0.3,
|
81 |
+
max_tokens=200,
|
82 |
+
stream=False
|
83 |
+
)
|
84 |
+
return completion.choices[0].message.content
|
85 |
+
except Exception as e:
|
86 |
+
print(f"Scene analysis error: {str(e)}")
|
87 |
+
return ""
|
88 |
+
|
89 |
+
def analyze_frame(self, frame: np.ndarray) -> tuple[str, dict]:
|
90 |
+
"""Analyze frame and return both safety analysis and scene context."""
|
91 |
if frame is None:
|
92 |
+
return "No frame received", {}
|
93 |
+
|
94 |
+
# First get scene understanding
|
95 |
+
scene_context = self.get_scene_context(frame)
|
96 |
+
scene_regions = self.parse_scene_context(scene_context)
|
97 |
+
|
98 |
+
# Then perform safety analysis with context
|
99 |
frame = self.preprocess_image(frame)
|
100 |
image_url = self.encode_image(frame)
|
101 |
|
|
|
108 |
"content": [
|
109 |
{
|
110 |
"type": "text",
|
111 |
+
"text": """Analyze this workplace image for safety concerns. For each identified hazard:
|
112 |
+
1. Specify the exact location where the hazard exists
|
113 |
+
2. Describe the specific safety issue
|
114 |
+
3. Note any violations or risks
|
115 |
+
|
116 |
+
Format each observation exactly as:
|
117 |
+
- <location>area:detailed hazard description</location>
|
118 |
+
|
119 |
+
Consider all safety aspects:
|
120 |
+
- PPE compliance
|
121 |
+
- Ergonomic risks
|
122 |
+
- Equipment safety
|
123 |
+
- Environmental hazards
|
124 |
+
- Material handling
|
125 |
+
- Access/egress
|
126 |
+
- Work procedures
|
127 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
},
|
129 |
{
|
130 |
"type": "image_url",
|
|
|
139 |
max_tokens=500,
|
140 |
stream=False
|
141 |
)
|
142 |
+
return completion.choices[0].message.content, scene_regions
|
143 |
except Exception as e:
|
144 |
print(f"Analysis error: {str(e)}")
|
145 |
+
return f"Analysis Error: {str(e)}", scene_regions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
+
def parse_scene_context(self, context: str) -> dict:
|
148 |
+
"""Parse scene context to get region mapping."""
|
149 |
+
regions = {}
|
150 |
+
for line in context.split('\n'):
|
151 |
+
if line.strip().startswith('-'):
|
152 |
+
parts = line.strip('- ').split(':')
|
153 |
+
if len(parts) == 2:
|
154 |
+
element_type = parts[0].strip()
|
155 |
+
location = parts[1].strip()
|
156 |
+
regions[element_type] = location
|
157 |
+
return regions
|
158 |
+
|
159 |
+
def get_region_coordinates(self, location: str, image_shape: tuple) -> tuple:
|
160 |
+
"""Convert location description to coordinates."""
|
161 |
+
height, width = image_shape[:2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
+
# Parse location description for spatial information
|
164 |
+
location = location.lower()
|
165 |
+
x1, y1, x2, y2 = 0, 0, width, height # Default to full image
|
|
|
|
|
|
|
|
|
166 |
|
167 |
+
# Horizontal position
|
168 |
+
if 'left' in location:
|
169 |
+
x2 = width // 2
|
170 |
+
elif 'right' in location:
|
171 |
+
x1 = width // 2
|
172 |
+
elif 'center' in location:
|
173 |
+
x1 = width // 4
|
174 |
+
x2 = 3 * width // 4
|
175 |
+
|
176 |
+
# Vertical position
|
177 |
+
if 'top' in location:
|
178 |
+
y2 = height // 2
|
179 |
+
elif 'bottom' in location:
|
180 |
+
y1 = height // 2
|
181 |
+
elif 'middle' in location or 'center' in location:
|
182 |
+
y1 = height // 4
|
183 |
+
y2 = 3 * height // 4
|
184 |
+
|
185 |
+
return (x1, y1, x2, y2)
|
186 |
+
|
187 |
+
def draw_observations(self, image: np.ndarray, observations: list, scene_regions: dict) -> np.ndarray:
|
188 |
+
"""Draw safety observations using scene context."""
|
189 |
height, width = image.shape[:2]
|
190 |
font = cv2.FONT_HERSHEY_SIMPLEX
|
191 |
font_scale = 0.5
|
192 |
thickness = 2
|
193 |
padding = 10
|
194 |
+
|
195 |
for idx, obs in enumerate(observations):
|
196 |
color = self.colors[idx % len(self.colors)]
|
197 |
|
198 |
+
# Find best matching region from scene context or parse location directly
|
199 |
+
location = obs['location'].lower()
|
200 |
+
x1, y1, x2, y2 = self.get_region_coordinates(location, image.shape)
|
|
|
|
|
|
|
201 |
|
202 |
+
# Draw observation box
|
203 |
cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
|
204 |
|
205 |
+
# Add label
|
206 |
+
label = obs['description'][:50] + "..." if len(obs['description']) > 50 else obs['description']
|
|
|
|
|
|
|
|
|
207 |
label_size, _ = cv2.getTextSize(label, font, font_scale, thickness)
|
208 |
+
|
209 |
+
# Position text above the box
|
210 |
text_x = max(0, x1)
|
211 |
text_y = max(label_size[1] + padding, y1 - padding)
|
212 |
|
213 |
+
# Draw text background
|
214 |
cv2.rectangle(image,
|
215 |
+
(text_x, text_y - label_size[1] - padding),
|
216 |
+
(text_x + label_size[0] + padding, text_y),
|
217 |
+
color, -1)
|
218 |
|
219 |
+
# Draw text
|
220 |
cv2.putText(image, label,
|
221 |
(text_x + padding//2, text_y - padding//2),
|
222 |
font, font_scale, (255, 255, 255), thickness)
|
223 |
|
224 |
+
return image
|
225 |
|
226 |
def process_frame(self, frame: np.ndarray) -> tuple[np.ndarray, str]:
|
227 |
+
"""Process frame with safety analysis and visualization."""
|
228 |
+
if frame is None:
|
229 |
+
return None, "No image provided"
|
230 |
+
|
231 |
+
# Get analysis and scene context
|
232 |
+
analysis, scene_regions = self.analyze_frame(frame)
|
233 |
+
display_frame = frame.copy()
|
234 |
+
|
235 |
+
# Parse observations
|
236 |
+
observations = []
|
237 |
+
for line in analysis.split('\n'):
|
238 |
+
line = line.strip()
|
239 |
+
if line.startswith('-') and '<location>' in line and '</location>' in line:
|
240 |
+
start = line.find('<location>') + len('<location>')
|
241 |
+
end = line.find('</location>')
|
242 |
+
location_description = line[start:end].strip()
|
243 |
+
|
244 |
+
if ':' in location_description:
|
245 |
+
location, description = location_description.split(':', 1)
|
246 |
+
observations.append({
|
247 |
+
'location': location.strip(),
|
248 |
+
'description': description.strip()
|
249 |
+
})
|
250 |
+
|
251 |
+
# Draw observations if any were found
|
252 |
+
if observations:
|
253 |
+
annotated_frame = self.draw_observations(display_frame, observations, scene_regions)
|
254 |
+
return annotated_frame, analysis
|
255 |
+
|
256 |
+
return display_frame, analysis
|
|
|
257 |
|
258 |
+
def create_monitor_interface():
|
259 |
monitor = SafetyMonitor()
|
260 |
|
261 |
with gr.Blocks() as demo:
|
|
|
286 |
gr.Markdown("""
|
287 |
## Instructions:
|
288 |
1. Upload any workplace/safety-related image
|
289 |
+
2. View identified hazards and their locations
|
290 |
+
3. Read detailed analysis of safety concerns
|
291 |
""")
|
292 |
|
293 |
return demo
|
294 |
|
295 |
+
if __name__ == "__main__":
|
296 |
+
demo = create_monitor_interface()
|
297 |
+
demo.launch()
|
298 |
+
|