import numpy as np import pandas as pd from openai import OpenAI import config client = OpenAI(api_key=) def cosine_similarity(a, b): return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b)) def _get_embedding(text, model="text-embedding-3-large"): try: text = text.replace("\n", " ") except: None return client.embeddings.create(input = [text], model=model).data[0].embedding def augment_user_input(user_input): prompt = f""" Based on the profile of this student, propose a highly detailed bullet point list of training programs in French that could be good for him: {user_input} """ augmented_input = client.chat.completions.create( model="gpt-4-turbo-preview", temperature=1, max_tokens = 400, messages=[ {"role": "user", "content": prompt}, ], ).choices[0].message.content return f"{user_input}\n{augmented_input}" def search_programs(raw_input,nb_programs_to_display=10,augment_input = False, filters = [], path_to_csv = "data_planeta_february2024.csv",): user_input = raw_input if augment_input: user_input = augment_user_input(raw_input) df = pd.read_csv(path_to_csv).dropna(subset=["Embeddings"]) if len(filters) != 0: formatted_filters = [] for filter in filters: formatted_filters.append(f"\nÉCOLE: {filter}") df = df[df["ÉCOLE"].isin(formatted_filters)].reset_index(drop=True).copy() try: df["embeddings"] = df.Embeddings.apply(lambda x: x["Embeddings"]) except: pass try: df["embeddings"] = df.Embeddings.apply(lambda x: np.array(eval(x))) except: pass embedding = _get_embedding(user_input, model="text-embedding-3-large") def wrap_cos(x,y): try: res = cosine_similarity(x,y) except: res = 0 return res try: df['similarity'] = df.Embeddings.apply(lambda x: wrap_cos(eval(x), embedding)) except: breakpoint() results = df.sort_values('similarity', ascending=False).head(int(nb_programs_to_display)).to_dict(orient="records") final_string = "" i = 1 for result in results: content = str(result["summary_french"]) extracted_string_program = "" extracted_string_program += content.split("##")[1].split("\n\n")[0] for sub_element in content.split("##")[2:]: extracted_string_program += sub_element extracted_string_program=extracted_string_program.replace("\n# ", "\n### ").replace("55555","###") displayed_string = "##"+extracted_string_program + "\n\n------\n\n" final_string += displayed_string i += 1 return final_string