""" Modified from https://github.com/sczhou/CodeFormer VQGAN code, adapted from the original created by the Unleashing Transformers authors: https://github.com/samb-t/unleashing-transformers/blob/master/models/vqgan.py This version of the arch specifically was gathered from an old version of GFPGAN. If this is a problem, please contact me. """ import math from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F import logging as logger from torch import Tensor class VectorQuantizer(nn.Module): def __init__(self, codebook_size, emb_dim, beta): super(VectorQuantizer, self).__init__() self.codebook_size = codebook_size # number of embeddings self.emb_dim = emb_dim # dimension of embedding self.beta = beta # commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2 self.embedding = nn.Embedding(self.codebook_size, self.emb_dim) self.embedding.weight.data.uniform_( -1.0 / self.codebook_size, 1.0 / self.codebook_size ) def forward(self, z): # reshape z -> (batch, height, width, channel) and flatten z = z.permute(0, 2, 3, 1).contiguous() z_flattened = z.view(-1, self.emb_dim) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z d = ( (z_flattened**2).sum(dim=1, keepdim=True) + (self.embedding.weight**2).sum(1) - 2 * torch.matmul(z_flattened, self.embedding.weight.t()) ) mean_distance = torch.mean(d) # find closest encodings # min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1) min_encoding_scores, min_encoding_indices = torch.topk( d, 1, dim=1, largest=False ) # [0-1], higher score, higher confidence min_encoding_scores = torch.exp(-min_encoding_scores / 10) min_encodings = torch.zeros( min_encoding_indices.shape[0], self.codebook_size ).to(z) min_encodings.scatter_(1, min_encoding_indices, 1) # get quantized latent vectors z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape) # compute loss for embedding loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean( (z_q - z.detach()) ** 2 ) # preserve gradients z_q = z + (z_q - z).detach() # perplexity e_mean = torch.mean(min_encodings, dim=0) perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10))) # reshape back to match original input shape z_q = z_q.permute(0, 3, 1, 2).contiguous() return ( z_q, loss, { "perplexity": perplexity, "min_encodings": min_encodings, "min_encoding_indices": min_encoding_indices, "min_encoding_scores": min_encoding_scores, "mean_distance": mean_distance, }, ) def get_codebook_feat(self, indices, shape): # input indices: batch*token_num -> (batch*token_num)*1 # shape: batch, height, width, channel indices = indices.view(-1, 1) min_encodings = torch.zeros(indices.shape[0], self.codebook_size).to(indices) min_encodings.scatter_(1, indices, 1) # get quantized latent vectors z_q = torch.matmul(min_encodings.float(), self.embedding.weight) if shape is not None: # reshape back to match original input shape z_q = z_q.view(shape).permute(0, 3, 1, 2).contiguous() return z_q class GumbelQuantizer(nn.Module): def __init__( self, codebook_size, emb_dim, num_hiddens, straight_through=False, kl_weight=5e-4, temp_init=1.0, ): super().__init__() self.codebook_size = codebook_size # number of embeddings self.emb_dim = emb_dim # dimension of embedding self.straight_through = straight_through self.temperature = temp_init self.kl_weight = kl_weight self.proj = nn.Conv2d( num_hiddens, codebook_size, 1 ) # projects last encoder layer to quantized logits self.embed = nn.Embedding(codebook_size, emb_dim) def forward(self, z): hard = self.straight_through if self.training else True logits = self.proj(z) soft_one_hot = F.gumbel_softmax(logits, tau=self.temperature, dim=1, hard=hard) z_q = torch.einsum("b n h w, n d -> b d h w", soft_one_hot, self.embed.weight) # + kl divergence to the prior loss qy = F.softmax(logits, dim=1) diff = ( self.kl_weight * torch.sum(qy * torch.log(qy * self.codebook_size + 1e-10), dim=1).mean() ) min_encoding_indices = soft_one_hot.argmax(dim=1) return z_q, diff, {"min_encoding_indices": min_encoding_indices} class Downsample(nn.Module): def __init__(self, in_channels): super().__init__() self.conv = torch.nn.Conv2d( in_channels, in_channels, kernel_size=3, stride=2, padding=0 ) def forward(self, x): pad = (0, 1, 0, 1) x = torch.nn.functional.pad(x, pad, mode="constant", value=0) x = self.conv(x) return x class Upsample(nn.Module): def __init__(self, in_channels): super().__init__() self.conv = nn.Conv2d( in_channels, in_channels, kernel_size=3, stride=1, padding=1 ) def forward(self, x): x = F.interpolate(x, scale_factor=2.0, mode="nearest") x = self.conv(x) return x class AttnBlock(nn.Module): def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = normalize(in_channels) self.q = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) self.k = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) self.v = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) self.proj_out = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention b, c, h, w = q.shape q = q.reshape(b, c, h * w) q = q.permute(0, 2, 1) k = k.reshape(b, c, h * w) w_ = torch.bmm(q, k) w_ = w_ * (int(c) ** (-0.5)) w_ = F.softmax(w_, dim=2) # attend to values v = v.reshape(b, c, h * w) w_ = w_.permute(0, 2, 1) h_ = torch.bmm(v, w_) h_ = h_.reshape(b, c, h, w) h_ = self.proj_out(h_) return x + h_ class Encoder(nn.Module): def __init__( self, in_channels, nf, out_channels, ch_mult, num_res_blocks, resolution, attn_resolutions, ): super().__init__() self.nf = nf self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.attn_resolutions = attn_resolutions curr_res = self.resolution in_ch_mult = (1,) + tuple(ch_mult) blocks = [] # initial convultion blocks.append(nn.Conv2d(in_channels, nf, kernel_size=3, stride=1, padding=1)) # residual and downsampling blocks, with attention on smaller res (16x16) for i in range(self.num_resolutions): block_in_ch = nf * in_ch_mult[i] block_out_ch = nf * ch_mult[i] for _ in range(self.num_res_blocks): blocks.append(ResBlock(block_in_ch, block_out_ch)) block_in_ch = block_out_ch if curr_res in attn_resolutions: blocks.append(AttnBlock(block_in_ch)) if i != self.num_resolutions - 1: blocks.append(Downsample(block_in_ch)) curr_res = curr_res // 2 # non-local attention block blocks.append(ResBlock(block_in_ch, block_in_ch)) # type: ignore blocks.append(AttnBlock(block_in_ch)) # type: ignore blocks.append(ResBlock(block_in_ch, block_in_ch)) # type: ignore # normalise and convert to latent size blocks.append(normalize(block_in_ch)) # type: ignore blocks.append( nn.Conv2d(block_in_ch, out_channels, kernel_size=3, stride=1, padding=1) # type: ignore ) self.blocks = nn.ModuleList(blocks) def forward(self, x): for block in self.blocks: x = block(x) return x class Generator(nn.Module): def __init__(self, nf, ch_mult, res_blocks, img_size, attn_resolutions, emb_dim): super().__init__() self.nf = nf self.ch_mult = ch_mult self.num_resolutions = len(self.ch_mult) self.num_res_blocks = res_blocks self.resolution = img_size self.attn_resolutions = attn_resolutions self.in_channels = emb_dim self.out_channels = 3 block_in_ch = self.nf * self.ch_mult[-1] curr_res = self.resolution // 2 ** (self.num_resolutions - 1) blocks = [] # initial conv blocks.append( nn.Conv2d(self.in_channels, block_in_ch, kernel_size=3, stride=1, padding=1) ) # non-local attention block blocks.append(ResBlock(block_in_ch, block_in_ch)) blocks.append(AttnBlock(block_in_ch)) blocks.append(ResBlock(block_in_ch, block_in_ch)) for i in reversed(range(self.num_resolutions)): block_out_ch = self.nf * self.ch_mult[i] for _ in range(self.num_res_blocks): blocks.append(ResBlock(block_in_ch, block_out_ch)) block_in_ch = block_out_ch if curr_res in self.attn_resolutions: blocks.append(AttnBlock(block_in_ch)) if i != 0: blocks.append(Upsample(block_in_ch)) curr_res = curr_res * 2 blocks.append(normalize(block_in_ch)) blocks.append( nn.Conv2d( block_in_ch, self.out_channels, kernel_size=3, stride=1, padding=1 ) ) self.blocks = nn.ModuleList(blocks) def forward(self, x): for block in self.blocks: x = block(x) return x class VQAutoEncoder(nn.Module): def __init__( self, img_size, nf, ch_mult, quantizer="nearest", res_blocks=2, attn_resolutions=[16], codebook_size=1024, emb_dim=256, beta=0.25, gumbel_straight_through=False, gumbel_kl_weight=1e-8, model_path=None, ): super().__init__() self.in_channels = 3 self.nf = nf self.n_blocks = res_blocks self.codebook_size = codebook_size self.embed_dim = emb_dim self.ch_mult = ch_mult self.resolution = img_size self.attn_resolutions = attn_resolutions self.quantizer_type = quantizer self.encoder = Encoder( self.in_channels, self.nf, self.embed_dim, self.ch_mult, self.n_blocks, self.resolution, self.attn_resolutions, ) if self.quantizer_type == "nearest": self.beta = beta # 0.25 self.quantize = VectorQuantizer( self.codebook_size, self.embed_dim, self.beta ) elif self.quantizer_type == "gumbel": self.gumbel_num_hiddens = emb_dim self.straight_through = gumbel_straight_through self.kl_weight = gumbel_kl_weight self.quantize = GumbelQuantizer( self.codebook_size, self.embed_dim, self.gumbel_num_hiddens, self.straight_through, self.kl_weight, ) self.generator = Generator( nf, ch_mult, res_blocks, img_size, attn_resolutions, emb_dim ) if model_path is not None: chkpt = torch.load(model_path, map_location="cpu") if "params_ema" in chkpt: self.load_state_dict( torch.load(model_path, map_location="cpu")["params_ema"] ) logger.info(f"vqgan is loaded from: {model_path} [params_ema]") elif "params" in chkpt: self.load_state_dict( torch.load(model_path, map_location="cpu")["params"] ) logger.info(f"vqgan is loaded from: {model_path} [params]") else: raise ValueError("Wrong params!") def forward(self, x): x = self.encoder(x) quant, codebook_loss, quant_stats = self.quantize(x) x = self.generator(quant) return x, codebook_loss, quant_stats def calc_mean_std(feat, eps=1e-5): """Calculate mean and std for adaptive_instance_normalization. Args: feat (Tensor): 4D tensor. eps (float): A small value added to the variance to avoid divide-by-zero. Default: 1e-5. """ size = feat.size() assert len(size) == 4, "The input feature should be 4D tensor." b, c = size[:2] feat_var = feat.view(b, c, -1).var(dim=2) + eps feat_std = feat_var.sqrt().view(b, c, 1, 1) feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1) return feat_mean, feat_std def adaptive_instance_normalization(content_feat, style_feat): """Adaptive instance normalization. Adjust the reference features to have the similar color and illuminations as those in the degradate features. Args: content_feat (Tensor): The reference feature. style_feat (Tensor): The degradate features. """ size = content_feat.size() style_mean, style_std = calc_mean_std(style_feat) content_mean, content_std = calc_mean_std(content_feat) normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand( size ) return normalized_feat * style_std.expand(size) + style_mean.expand(size) class PositionEmbeddingSine(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__( self, num_pos_feats=64, temperature=10000, normalize=False, scale=None ): super().__init__() self.num_pos_feats = num_pos_feats self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, x, mask=None): if mask is None: mask = torch.zeros( (x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool ) not_mask = ~mask # pylint: disable=invalid-unary-operand-type y_embed = not_mask.cumsum(1, dtype=torch.float32) x_embed = not_mask.cumsum(2, dtype=torch.float32) if self.normalize: eps = 1e-6 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack( (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 ).flatten(3) pos_y = torch.stack( (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 ).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos def _get_activation_fn(activation): """Return an activation function given a string""" if activation == "relu": return F.relu if activation == "gelu": return F.gelu if activation == "glu": return F.glu raise RuntimeError(f"activation should be relu/gelu, not {activation}.") class TransformerSALayer(nn.Module): def __init__( self, embed_dim, nhead=8, dim_mlp=2048, dropout=0.0, activation="gelu" ): super().__init__() self.self_attn = nn.MultiheadAttention(embed_dim, nhead, dropout=dropout) # Implementation of Feedforward model - MLP self.linear1 = nn.Linear(embed_dim, dim_mlp) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_mlp, embed_dim) self.norm1 = nn.LayerNorm(embed_dim) self.norm2 = nn.LayerNorm(embed_dim) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.activation = _get_activation_fn(activation) def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward( self, tgt, tgt_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, query_pos: Optional[Tensor] = None, ): # self attention tgt2 = self.norm1(tgt) q = k = self.with_pos_embed(tgt2, query_pos) tgt2 = self.self_attn( q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask )[0] tgt = tgt + self.dropout1(tgt2) # ffn tgt2 = self.norm2(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) tgt = tgt + self.dropout2(tgt2) return tgt def normalize(in_channels): return torch.nn.GroupNorm( num_groups=32, num_channels=in_channels, eps=1e-6, affine=True ) @torch.jit.script # type: ignore def swish(x): return x * torch.sigmoid(x) class ResBlock(nn.Module): def __init__(self, in_channels, out_channels=None): super(ResBlock, self).__init__() self.in_channels = in_channels self.out_channels = in_channels if out_channels is None else out_channels self.norm1 = normalize(in_channels) self.conv1 = nn.Conv2d( in_channels, out_channels, kernel_size=3, stride=1, padding=1 # type: ignore ) self.norm2 = normalize(out_channels) self.conv2 = nn.Conv2d( out_channels, out_channels, kernel_size=3, stride=1, padding=1 # type: ignore ) if self.in_channels != self.out_channels: self.conv_out = nn.Conv2d( in_channels, out_channels, kernel_size=1, stride=1, padding=0 # type: ignore ) def forward(self, x_in): x = x_in x = self.norm1(x) x = swish(x) x = self.conv1(x) x = self.norm2(x) x = swish(x) x = self.conv2(x) if self.in_channels != self.out_channels: x_in = self.conv_out(x_in) return x + x_in class Fuse_sft_block(nn.Module): def __init__(self, in_ch, out_ch): super().__init__() self.encode_enc = ResBlock(2 * in_ch, out_ch) self.scale = nn.Sequential( nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), nn.LeakyReLU(0.2, True), nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1), ) self.shift = nn.Sequential( nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), nn.LeakyReLU(0.2, True), nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1), ) def forward(self, enc_feat, dec_feat, w=1): enc_feat = self.encode_enc(torch.cat([enc_feat, dec_feat], dim=1)) scale = self.scale(enc_feat) shift = self.shift(enc_feat) residual = w * (dec_feat * scale + shift) out = dec_feat + residual return out class CodeFormer(VQAutoEncoder): def __init__(self, state_dict): dim_embd = 512 n_head = 8 n_layers = 9 codebook_size = 1024 latent_size = 256 connect_list = ["32", "64", "128", "256"] fix_modules = ["quantize", "generator"] # This is just a guess as I only have one model to look at position_emb = state_dict["position_emb"] dim_embd = position_emb.shape[1] latent_size = position_emb.shape[0] try: n_layers = len( set([x.split(".")[1] for x in state_dict.keys() if "ft_layers" in x]) ) except: pass codebook_size = state_dict["quantize.embedding.weight"].shape[0] # This is also just another guess n_head_exp = ( state_dict["ft_layers.0.self_attn.in_proj_weight"].shape[0] // dim_embd ) n_head = 2**n_head_exp in_nc = state_dict["encoder.blocks.0.weight"].shape[1] self.model_arch = "CodeFormer" self.sub_type = "Face SR" self.scale = 8 self.in_nc = in_nc self.out_nc = in_nc self.state = state_dict self.supports_fp16 = False self.supports_bf16 = True self.min_size_restriction = 16 super(CodeFormer, self).__init__( 512, 64, [1, 2, 2, 4, 4, 8], "nearest", 2, [16], codebook_size ) if fix_modules is not None: for module in fix_modules: for param in getattr(self, module).parameters(): param.requires_grad = False self.connect_list = connect_list self.n_layers = n_layers self.dim_embd = dim_embd self.dim_mlp = dim_embd * 2 self.position_emb = nn.Parameter(torch.zeros(latent_size, self.dim_embd)) # type: ignore self.feat_emb = nn.Linear(256, self.dim_embd) # transformer self.ft_layers = nn.Sequential( *[ TransformerSALayer( embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0 ) for _ in range(self.n_layers) ] ) # logits_predict head self.idx_pred_layer = nn.Sequential( nn.LayerNorm(dim_embd), nn.Linear(dim_embd, codebook_size, bias=False) ) self.channels = { "16": 512, "32": 256, "64": 256, "128": 128, "256": 128, "512": 64, } # after second residual block for > 16, before attn layer for ==16 self.fuse_encoder_block = { "512": 2, "256": 5, "128": 8, "64": 11, "32": 14, "16": 18, } # after first residual block for > 16, before attn layer for ==16 self.fuse_generator_block = { "16": 6, "32": 9, "64": 12, "128": 15, "256": 18, "512": 21, } # fuse_convs_dict self.fuse_convs_dict = nn.ModuleDict() for f_size in self.connect_list: in_ch = self.channels[f_size] self.fuse_convs_dict[f_size] = Fuse_sft_block(in_ch, in_ch) self.load_state_dict(state_dict) def _init_weights(self, module): if isinstance(module, (nn.Linear, nn.Embedding)): module.weight.data.normal_(mean=0.0, std=0.02) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def forward(self, x, weight=0.5, **kwargs): detach_16 = True code_only = False adain = True # ################### Encoder ##################### enc_feat_dict = {} out_list = [self.fuse_encoder_block[f_size] for f_size in self.connect_list] for i, block in enumerate(self.encoder.blocks): x = block(x) if i in out_list: enc_feat_dict[str(x.shape[-1])] = x.clone() lq_feat = x # ################# Transformer ################### # quant_feat, codebook_loss, quant_stats = self.quantize(lq_feat) pos_emb = self.position_emb.unsqueeze(1).repeat(1, x.shape[0], 1) # BCHW -> BC(HW) -> (HW)BC feat_emb = self.feat_emb(lq_feat.flatten(2).permute(2, 0, 1)) query_emb = feat_emb # Transformer encoder for layer in self.ft_layers: query_emb = layer(query_emb, query_pos=pos_emb) # output logits logits = self.idx_pred_layer(query_emb) # (hw)bn logits = logits.permute(1, 0, 2) # (hw)bn -> b(hw)n if code_only: # for training stage II # logits doesn't need softmax before cross_entropy loss return logits, lq_feat # ################# Quantization ################### # if self.training: # quant_feat = torch.einsum('btn,nc->btc', [soft_one_hot, self.quantize.embedding.weight]) # # b(hw)c -> bc(hw) -> bchw # quant_feat = quant_feat.permute(0,2,1).view(lq_feat.shape) # ------------ soft_one_hot = F.softmax(logits, dim=2) _, top_idx = torch.topk(soft_one_hot, 1, dim=2) quant_feat = self.quantize.get_codebook_feat( top_idx, shape=[x.shape[0], 16, 16, 256] # type: ignore ) # preserve gradients # quant_feat = lq_feat + (quant_feat - lq_feat).detach() if detach_16: quant_feat = quant_feat.detach() # for training stage III if adain: quant_feat = adaptive_instance_normalization(quant_feat, lq_feat) # ################## Generator #################### x = quant_feat fuse_list = [self.fuse_generator_block[f_size] for f_size in self.connect_list] for i, block in enumerate(self.generator.blocks): x = block(x) if i in fuse_list: # fuse after i-th block f_size = str(x.shape[-1]) if weight > 0: x = self.fuse_convs_dict[f_size]( enc_feat_dict[f_size].detach(), x, weight ) out = x # logits doesn't need softmax before cross_entropy loss # return out, logits, lq_feat return out, logits