# pylint: skip-file import math import re import numpy as np import torch import torch.nn as nn import torch.utils.checkpoint as checkpoint from einops import rearrange from einops.layers.torch import Rearrange from torch import Tensor from torch.nn import functional as F from .timm.drop import DropPath from .timm.weight_init import trunc_normal_ def img2windows(img, H_sp, W_sp): """ Input: Image (B, C, H, W) Output: Window Partition (B', N, C) """ B, C, H, W = img.shape img_reshape = img.view(B, C, H // H_sp, H_sp, W // W_sp, W_sp) img_perm = ( img_reshape.permute(0, 2, 4, 3, 5, 1).contiguous().reshape(-1, H_sp * W_sp, C) ) return img_perm def windows2img(img_splits_hw, H_sp, W_sp, H, W): """ Input: Window Partition (B', N, C) Output: Image (B, H, W, C) """ B = int(img_splits_hw.shape[0] / (H * W / H_sp / W_sp)) img = img_splits_hw.view(B, H // H_sp, W // W_sp, H_sp, W_sp, -1) img = img.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) return img class SpatialGate(nn.Module): """Spatial-Gate. Args: dim (int): Half of input channels. """ def __init__(self, dim): super().__init__() self.norm = nn.LayerNorm(dim) self.conv = nn.Conv2d( dim, dim, kernel_size=3, stride=1, padding=1, groups=dim ) # DW Conv def forward(self, x, H, W): # Split x1, x2 = x.chunk(2, dim=-1) B, N, C = x.shape x2 = ( self.conv(self.norm(x2).transpose(1, 2).contiguous().view(B, C // 2, H, W)) .flatten(2) .transpose(-1, -2) .contiguous() ) return x1 * x2 class SGFN(nn.Module): """Spatial-Gate Feed-Forward Network. Args: in_features (int): Number of input channels. hidden_features (int | None): Number of hidden channels. Default: None out_features (int | None): Number of output channels. Default: None act_layer (nn.Module): Activation layer. Default: nn.GELU drop (float): Dropout rate. Default: 0.0 """ def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0, ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.sg = SpatialGate(hidden_features // 2) self.fc2 = nn.Linear(hidden_features // 2, out_features) self.drop = nn.Dropout(drop) def forward(self, x, H, W): """ Input: x: (B, H*W, C), H, W Output: x: (B, H*W, C) """ x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.sg(x, H, W) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class DynamicPosBias(nn.Module): # The implementation builds on Crossformer code https://github.com/cheerss/CrossFormer/blob/main/models/crossformer.py """Dynamic Relative Position Bias. Args: dim (int): Number of input channels. num_heads (int): Number of attention heads. residual (bool): If True, use residual strage to connect conv. """ def __init__(self, dim, num_heads, residual): super().__init__() self.residual = residual self.num_heads = num_heads self.pos_dim = dim // 4 self.pos_proj = nn.Linear(2, self.pos_dim) self.pos1 = nn.Sequential( nn.LayerNorm(self.pos_dim), nn.ReLU(inplace=True), nn.Linear(self.pos_dim, self.pos_dim), ) self.pos2 = nn.Sequential( nn.LayerNorm(self.pos_dim), nn.ReLU(inplace=True), nn.Linear(self.pos_dim, self.pos_dim), ) self.pos3 = nn.Sequential( nn.LayerNorm(self.pos_dim), nn.ReLU(inplace=True), nn.Linear(self.pos_dim, self.num_heads), ) def forward(self, biases): if self.residual: pos = self.pos_proj(biases) # 2Gh-1 * 2Gw-1, heads pos = pos + self.pos1(pos) pos = pos + self.pos2(pos) pos = self.pos3(pos) else: pos = self.pos3(self.pos2(self.pos1(self.pos_proj(biases)))) return pos class Spatial_Attention(nn.Module): """Spatial Window Self-Attention. It supports rectangle window (containing square window). Args: dim (int): Number of input channels. idx (int): The indentix of window. (0/1) split_size (tuple(int)): Height and Width of spatial window. dim_out (int | None): The dimension of the attention output. Default: None num_heads (int): Number of attention heads. Default: 6 attn_drop (float): Dropout ratio of attention weight. Default: 0.0 proj_drop (float): Dropout ratio of output. Default: 0.0 qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set position_bias (bool): The dynamic relative position bias. Default: True """ def __init__( self, dim, idx, split_size=[8, 8], dim_out=None, num_heads=6, attn_drop=0.0, proj_drop=0.0, qk_scale=None, position_bias=True, ): super().__init__() self.dim = dim self.dim_out = dim_out or dim self.split_size = split_size self.num_heads = num_heads self.idx = idx self.position_bias = position_bias head_dim = dim // num_heads self.scale = qk_scale or head_dim**-0.5 if idx == 0: H_sp, W_sp = self.split_size[0], self.split_size[1] elif idx == 1: W_sp, H_sp = self.split_size[0], self.split_size[1] else: print("ERROR MODE", idx) exit(0) self.H_sp = H_sp self.W_sp = W_sp if self.position_bias: self.pos = DynamicPosBias(self.dim // 4, self.num_heads, residual=False) # generate mother-set position_bias_h = torch.arange(1 - self.H_sp, self.H_sp) position_bias_w = torch.arange(1 - self.W_sp, self.W_sp) biases = torch.stack(torch.meshgrid([position_bias_h, position_bias_w])) biases = biases.flatten(1).transpose(0, 1).contiguous().float() self.register_buffer("rpe_biases", biases) # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.H_sp) coords_w = torch.arange(self.W_sp) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) coords_flatten = torch.flatten(coords, 1) relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] relative_coords = relative_coords.permute(1, 2, 0).contiguous() relative_coords[:, :, 0] += self.H_sp - 1 relative_coords[:, :, 1] += self.W_sp - 1 relative_coords[:, :, 0] *= 2 * self.W_sp - 1 relative_position_index = relative_coords.sum(-1) self.register_buffer("relative_position_index", relative_position_index) self.attn_drop = nn.Dropout(attn_drop) def im2win(self, x, H, W): B, N, C = x.shape x = x.transpose(-2, -1).contiguous().view(B, C, H, W) x = img2windows(x, self.H_sp, self.W_sp) x = ( x.reshape(-1, self.H_sp * self.W_sp, self.num_heads, C // self.num_heads) .permute(0, 2, 1, 3) .contiguous() ) return x def forward(self, qkv, H, W, mask=None): """ Input: qkv: (B, 3*L, C), H, W, mask: (B, N, N), N is the window size Output: x (B, H, W, C) """ q, k, v = qkv[0], qkv[1], qkv[2] B, L, C = q.shape assert L == H * W, "flatten img_tokens has wrong size" # partition the q,k,v, image to window q = self.im2win(q, H, W) k = self.im2win(k, H, W) v = self.im2win(v, H, W) q = q * self.scale attn = q @ k.transpose(-2, -1) # B head N C @ B head C N --> B head N N # calculate drpe if self.position_bias: pos = self.pos(self.rpe_biases) # select position bias relative_position_bias = pos[self.relative_position_index.view(-1)].view( self.H_sp * self.W_sp, self.H_sp * self.W_sp, -1 ) relative_position_bias = relative_position_bias.permute( 2, 0, 1 ).contiguous() attn = attn + relative_position_bias.unsqueeze(0) N = attn.shape[3] # use mask for shift window if mask is not None: nW = mask.shape[0] attn = attn.view(B, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze( 0 ) attn = attn.view(-1, self.num_heads, N, N) attn = nn.functional.softmax(attn, dim=-1, dtype=attn.dtype) attn = self.attn_drop(attn) x = attn @ v x = x.transpose(1, 2).reshape( -1, self.H_sp * self.W_sp, C ) # B head N N @ B head N C # merge the window, window to image x = windows2img(x, self.H_sp, self.W_sp, H, W) # B H' W' C return x class Adaptive_Spatial_Attention(nn.Module): # The implementation builds on CAT code https://github.com/Zhengchen1999/CAT """Adaptive Spatial Self-Attention Args: dim (int): Number of input channels. num_heads (int): Number of attention heads. Default: 6 split_size (tuple(int)): Height and Width of spatial window. shift_size (tuple(int)): Shift size for spatial window. qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. drop (float): Dropout rate. Default: 0.0 attn_drop (float): Attention dropout rate. Default: 0.0 rg_idx (int): The indentix of Residual Group (RG) b_idx (int): The indentix of Block in each RG """ def __init__( self, dim, num_heads, reso=64, split_size=[8, 8], shift_size=[1, 2], qkv_bias=False, qk_scale=None, drop=0.0, attn_drop=0.0, rg_idx=0, b_idx=0, ): super().__init__() self.dim = dim self.num_heads = num_heads self.split_size = split_size self.shift_size = shift_size self.b_idx = b_idx self.rg_idx = rg_idx self.patches_resolution = reso self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) assert ( 0 <= self.shift_size[0] < self.split_size[0] ), "shift_size must in 0-split_size0" assert ( 0 <= self.shift_size[1] < self.split_size[1] ), "shift_size must in 0-split_size1" self.branch_num = 2 self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(drop) self.attns = nn.ModuleList( [ Spatial_Attention( dim // 2, idx=i, split_size=split_size, num_heads=num_heads // 2, dim_out=dim // 2, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, position_bias=True, ) for i in range(self.branch_num) ] ) if (self.rg_idx % 2 == 0 and self.b_idx > 0 and (self.b_idx - 2) % 4 == 0) or ( self.rg_idx % 2 != 0 and self.b_idx % 4 == 0 ): attn_mask = self.calculate_mask( self.patches_resolution, self.patches_resolution ) self.register_buffer("attn_mask_0", attn_mask[0]) self.register_buffer("attn_mask_1", attn_mask[1]) else: attn_mask = None self.register_buffer("attn_mask_0", None) self.register_buffer("attn_mask_1", None) self.dwconv = nn.Sequential( nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim), nn.BatchNorm2d(dim), nn.GELU(), ) self.channel_interaction = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(dim, dim // 8, kernel_size=1), nn.BatchNorm2d(dim // 8), nn.GELU(), nn.Conv2d(dim // 8, dim, kernel_size=1), ) self.spatial_interaction = nn.Sequential( nn.Conv2d(dim, dim // 16, kernel_size=1), nn.BatchNorm2d(dim // 16), nn.GELU(), nn.Conv2d(dim // 16, 1, kernel_size=1), ) def calculate_mask(self, H, W): # The implementation builds on Swin Transformer code https://github.com/microsoft/Swin-Transformer/blob/main/models/swin_transformer.py # calculate attention mask for shift window img_mask_0 = torch.zeros((1, H, W, 1)) # 1 H W 1 idx=0 img_mask_1 = torch.zeros((1, H, W, 1)) # 1 H W 1 idx=1 h_slices_0 = ( slice(0, -self.split_size[0]), slice(-self.split_size[0], -self.shift_size[0]), slice(-self.shift_size[0], None), ) w_slices_0 = ( slice(0, -self.split_size[1]), slice(-self.split_size[1], -self.shift_size[1]), slice(-self.shift_size[1], None), ) h_slices_1 = ( slice(0, -self.split_size[1]), slice(-self.split_size[1], -self.shift_size[1]), slice(-self.shift_size[1], None), ) w_slices_1 = ( slice(0, -self.split_size[0]), slice(-self.split_size[0], -self.shift_size[0]), slice(-self.shift_size[0], None), ) cnt = 0 for h in h_slices_0: for w in w_slices_0: img_mask_0[:, h, w, :] = cnt cnt += 1 cnt = 0 for h in h_slices_1: for w in w_slices_1: img_mask_1[:, h, w, :] = cnt cnt += 1 # calculate mask for window-0 img_mask_0 = img_mask_0.view( 1, H // self.split_size[0], self.split_size[0], W // self.split_size[1], self.split_size[1], 1, ) img_mask_0 = ( img_mask_0.permute(0, 1, 3, 2, 4, 5) .contiguous() .view(-1, self.split_size[0], self.split_size[1], 1) ) # nW, sw[0], sw[1], 1 mask_windows_0 = img_mask_0.view(-1, self.split_size[0] * self.split_size[1]) attn_mask_0 = mask_windows_0.unsqueeze(1) - mask_windows_0.unsqueeze(2) attn_mask_0 = attn_mask_0.masked_fill( attn_mask_0 != 0, float(-100.0) ).masked_fill(attn_mask_0 == 0, float(0.0)) # calculate mask for window-1 img_mask_1 = img_mask_1.view( 1, H // self.split_size[1], self.split_size[1], W // self.split_size[0], self.split_size[0], 1, ) img_mask_1 = ( img_mask_1.permute(0, 1, 3, 2, 4, 5) .contiguous() .view(-1, self.split_size[1], self.split_size[0], 1) ) # nW, sw[1], sw[0], 1 mask_windows_1 = img_mask_1.view(-1, self.split_size[1] * self.split_size[0]) attn_mask_1 = mask_windows_1.unsqueeze(1) - mask_windows_1.unsqueeze(2) attn_mask_1 = attn_mask_1.masked_fill( attn_mask_1 != 0, float(-100.0) ).masked_fill(attn_mask_1 == 0, float(0.0)) return attn_mask_0, attn_mask_1 def forward(self, x, H, W): """ Input: x: (B, H*W, C), H, W Output: x: (B, H*W, C) """ B, L, C = x.shape assert L == H * W, "flatten img_tokens has wrong size" qkv = self.qkv(x).reshape(B, -1, 3, C).permute(2, 0, 1, 3) # 3, B, HW, C # V without partition v = qkv[2].transpose(-2, -1).contiguous().view(B, C, H, W) # image padding max_split_size = max(self.split_size[0], self.split_size[1]) pad_l = pad_t = 0 pad_r = (max_split_size - W % max_split_size) % max_split_size pad_b = (max_split_size - H % max_split_size) % max_split_size qkv = qkv.reshape(3 * B, H, W, C).permute(0, 3, 1, 2) # 3B C H W qkv = ( F.pad(qkv, (pad_l, pad_r, pad_t, pad_b)) .reshape(3, B, C, -1) .transpose(-2, -1) ) # l r t b _H = pad_b + H _W = pad_r + W _L = _H * _W # window-0 and window-1 on split channels [C/2, C/2]; for square windows (e.g., 8x8), window-0 and window-1 can be merged # shift in block: (0, 4, 8, ...), (2, 6, 10, ...), (0, 4, 8, ...), (2, 6, 10, ...), ... if (self.rg_idx % 2 == 0 and self.b_idx > 0 and (self.b_idx - 2) % 4 == 0) or ( self.rg_idx % 2 != 0 and self.b_idx % 4 == 0 ): qkv = qkv.view(3, B, _H, _W, C) qkv_0 = torch.roll( qkv[:, :, :, :, : C // 2], shifts=(-self.shift_size[0], -self.shift_size[1]), dims=(2, 3), ) qkv_0 = qkv_0.view(3, B, _L, C // 2) qkv_1 = torch.roll( qkv[:, :, :, :, C // 2 :], shifts=(-self.shift_size[1], -self.shift_size[0]), dims=(2, 3), ) qkv_1 = qkv_1.view(3, B, _L, C // 2) if self.patches_resolution != _H or self.patches_resolution != _W: mask_tmp = self.calculate_mask(_H, _W) x1_shift = self.attns[0](qkv_0, _H, _W, mask=mask_tmp[0].to(x.device)) x2_shift = self.attns[1](qkv_1, _H, _W, mask=mask_tmp[1].to(x.device)) else: x1_shift = self.attns[0](qkv_0, _H, _W, mask=self.attn_mask_0) x2_shift = self.attns[1](qkv_1, _H, _W, mask=self.attn_mask_1) x1 = torch.roll( x1_shift, shifts=(self.shift_size[0], self.shift_size[1]), dims=(1, 2) ) x2 = torch.roll( x2_shift, shifts=(self.shift_size[1], self.shift_size[0]), dims=(1, 2) ) x1 = x1[:, :H, :W, :].reshape(B, L, C // 2) x2 = x2[:, :H, :W, :].reshape(B, L, C // 2) # attention output attened_x = torch.cat([x1, x2], dim=2) else: x1 = self.attns[0](qkv[:, :, :, : C // 2], _H, _W)[:, :H, :W, :].reshape( B, L, C // 2 ) x2 = self.attns[1](qkv[:, :, :, C // 2 :], _H, _W)[:, :H, :W, :].reshape( B, L, C // 2 ) # attention output attened_x = torch.cat([x1, x2], dim=2) # convolution output conv_x = self.dwconv(v) # Adaptive Interaction Module (AIM) # C-Map (before sigmoid) channel_map = ( self.channel_interaction(conv_x) .permute(0, 2, 3, 1) .contiguous() .view(B, 1, C) ) # S-Map (before sigmoid) attention_reshape = attened_x.transpose(-2, -1).contiguous().view(B, C, H, W) spatial_map = self.spatial_interaction(attention_reshape) # C-I attened_x = attened_x * torch.sigmoid(channel_map) # S-I conv_x = torch.sigmoid(spatial_map) * conv_x conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(B, L, C) x = attened_x + conv_x x = self.proj(x) x = self.proj_drop(x) return x class Adaptive_Channel_Attention(nn.Module): # The implementation builds on XCiT code https://github.com/facebookresearch/xcit """Adaptive Channel Self-Attention Args: dim (int): Number of input channels. num_heads (int): Number of attention heads. Default: 6 qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. attn_drop (float): Attention dropout rate. Default: 0.0 drop_path (float): Stochastic depth rate. Default: 0.0 """ def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0, ): super().__init__() self.num_heads = num_heads self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1)) self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.dwconv = nn.Sequential( nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim), nn.BatchNorm2d(dim), nn.GELU(), ) self.channel_interaction = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(dim, dim // 8, kernel_size=1), nn.BatchNorm2d(dim // 8), nn.GELU(), nn.Conv2d(dim // 8, dim, kernel_size=1), ) self.spatial_interaction = nn.Sequential( nn.Conv2d(dim, dim // 16, kernel_size=1), nn.BatchNorm2d(dim // 16), nn.GELU(), nn.Conv2d(dim // 16, 1, kernel_size=1), ) def forward(self, x, H, W): """ Input: x: (B, H*W, C), H, W Output: x: (B, H*W, C) """ B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) qkv = qkv.permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] q = q.transpose(-2, -1) k = k.transpose(-2, -1) v = v.transpose(-2, -1) v_ = v.reshape(B, C, N).contiguous().view(B, C, H, W) q = torch.nn.functional.normalize(q, dim=-1) k = torch.nn.functional.normalize(k, dim=-1) attn = (q @ k.transpose(-2, -1)) * self.temperature attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) # attention output attened_x = (attn @ v).permute(0, 3, 1, 2).reshape(B, N, C) # convolution output conv_x = self.dwconv(v_) # Adaptive Interaction Module (AIM) # C-Map (before sigmoid) attention_reshape = attened_x.transpose(-2, -1).contiguous().view(B, C, H, W) channel_map = self.channel_interaction(attention_reshape) # S-Map (before sigmoid) spatial_map = ( self.spatial_interaction(conv_x) .permute(0, 2, 3, 1) .contiguous() .view(B, N, 1) ) # S-I attened_x = attened_x * torch.sigmoid(spatial_map) # C-I conv_x = conv_x * torch.sigmoid(channel_map) conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(B, N, C) x = attened_x + conv_x x = self.proj(x) x = self.proj_drop(x) return x class DATB(nn.Module): def __init__( self, dim, num_heads, reso=64, split_size=[2, 4], shift_size=[1, 2], expansion_factor=4.0, qkv_bias=False, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, rg_idx=0, b_idx=0, ): super().__init__() self.norm1 = norm_layer(dim) if b_idx % 2 == 0: # DSTB self.attn = Adaptive_Spatial_Attention( dim, num_heads=num_heads, reso=reso, split_size=split_size, shift_size=shift_size, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop, rg_idx=rg_idx, b_idx=b_idx, ) else: # DCTB self.attn = Adaptive_Channel_Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, ) self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() ffn_hidden_dim = int(dim * expansion_factor) self.ffn = SGFN( in_features=dim, hidden_features=ffn_hidden_dim, out_features=dim, act_layer=act_layer, ) self.norm2 = norm_layer(dim) def forward(self, x, x_size): """ Input: x: (B, H*W, C), x_size: (H, W) Output: x: (B, H*W, C) """ H, W = x_size x = x + self.drop_path(self.attn(self.norm1(x), H, W)) x = x + self.drop_path(self.ffn(self.norm2(x), H, W)) return x class ResidualGroup(nn.Module): """ResidualGroup Args: dim (int): Number of input channels. reso (int): Input resolution. num_heads (int): Number of attention heads. split_size (tuple(int)): Height and Width of spatial window. expansion_factor (float): Ratio of ffn hidden dim to embedding dim. qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. Default: None drop (float): Dropout rate. Default: 0 attn_drop(float): Attention dropout rate. Default: 0 drop_paths (float | None): Stochastic depth rate. act_layer (nn.Module): Activation layer. Default: nn.GELU norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm depth (int): Number of dual aggregation Transformer blocks in residual group. use_chk (bool): Whether to use checkpointing to save memory. resi_connection: The convolutional block before residual connection. '1conv'/'3conv' """ def __init__( self, dim, reso, num_heads, split_size=[2, 4], expansion_factor=4.0, qkv_bias=False, qk_scale=None, drop=0.0, attn_drop=0.0, drop_paths=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, depth=2, use_chk=False, resi_connection="1conv", rg_idx=0, ): super().__init__() self.use_chk = use_chk self.reso = reso self.blocks = nn.ModuleList( [ DATB( dim=dim, num_heads=num_heads, reso=reso, split_size=split_size, shift_size=[split_size[0] // 2, split_size[1] // 2], expansion_factor=expansion_factor, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop, drop_path=drop_paths[i], act_layer=act_layer, norm_layer=norm_layer, rg_idx=rg_idx, b_idx=i, ) for i in range(depth) ] ) if resi_connection == "1conv": self.conv = nn.Conv2d(dim, dim, 3, 1, 1) elif resi_connection == "3conv": self.conv = nn.Sequential( nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True), nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True), nn.Conv2d(dim // 4, dim, 3, 1, 1), ) def forward(self, x, x_size): """ Input: x: (B, H*W, C), x_size: (H, W) Output: x: (B, H*W, C) """ H, W = x_size res = x for blk in self.blocks: if self.use_chk: x = checkpoint.checkpoint(blk, x, x_size) else: x = blk(x, x_size) x = rearrange(x, "b (h w) c -> b c h w", h=H, w=W) x = self.conv(x) x = rearrange(x, "b c h w -> b (h w) c") x = res + x return x class Upsample(nn.Sequential): """Upsample module. Args: scale (int): Scale factor. Supported scales: 2^n and 3. num_feat (int): Channel number of intermediate features. """ def __init__(self, scale, num_feat): m = [] if (scale & (scale - 1)) == 0: # scale = 2^n for _ in range(int(math.log(scale, 2))): m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) m.append(nn.PixelShuffle(2)) elif scale == 3: m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) m.append(nn.PixelShuffle(3)) else: raise ValueError( f"scale {scale} is not supported. " "Supported scales: 2^n and 3." ) super(Upsample, self).__init__(*m) class UpsampleOneStep(nn.Sequential): """UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle) Used in lightweight SR to save parameters. Args: scale (int): Scale factor. Supported scales: 2^n and 3. num_feat (int): Channel number of intermediate features. """ def __init__(self, scale, num_feat, num_out_ch, input_resolution=None): self.num_feat = num_feat self.input_resolution = input_resolution m = [] m.append(nn.Conv2d(num_feat, (scale**2) * num_out_ch, 3, 1, 1)) m.append(nn.PixelShuffle(scale)) super(UpsampleOneStep, self).__init__(*m) def flops(self): h, w = self.input_resolution flops = h * w * self.num_feat * 3 * 9 return flops class DAT(nn.Module): """Dual Aggregation Transformer Args: img_size (int): Input image size. Default: 64 in_chans (int): Number of input image channels. Default: 3 embed_dim (int): Patch embedding dimension. Default: 180 depths (tuple(int)): Depth of each residual group (number of DATB in each RG). split_size (tuple(int)): Height and Width of spatial window. num_heads (tuple(int)): Number of attention heads in different residual groups. expansion_factor (float): Ratio of ffn hidden dim to embedding dim. Default: 4 qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. Default: None drop_rate (float): Dropout rate. Default: 0 attn_drop_rate (float): Attention dropout rate. Default: 0 drop_path_rate (float): Stochastic depth rate. Default: 0.1 act_layer (nn.Module): Activation layer. Default: nn.GELU norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm use_chk (bool): Whether to use checkpointing to save memory. upscale: Upscale factor. 2/3/4 for image SR img_range: Image range. 1. or 255. resi_connection: The convolutional block before residual connection. '1conv'/'3conv' """ def __init__(self, state_dict): super().__init__() # defaults img_size = 64 in_chans = 3 embed_dim = 180 split_size = [2, 4] depth = [2, 2, 2, 2] num_heads = [2, 2, 2, 2] expansion_factor = 4.0 qkv_bias = True qk_scale = None drop_rate = 0.0 attn_drop_rate = 0.0 drop_path_rate = 0.1 act_layer = nn.GELU norm_layer = nn.LayerNorm use_chk = False upscale = 2 img_range = 1.0 resi_connection = "1conv" upsampler = "pixelshuffle" self.model_arch = "DAT" self.sub_type = "SR" self.state = state_dict state_keys = state_dict.keys() if "conv_before_upsample.0.weight" in state_keys: if "conv_up1.weight" in state_keys: upsampler = "nearest+conv" else: upsampler = "pixelshuffle" supports_fp16 = False elif "upsample.0.weight" in state_keys: upsampler = "pixelshuffledirect" else: upsampler = "" num_feat = ( state_dict.get("conv_before_upsample.0.weight", None).shape[1] if state_dict.get("conv_before_upsample.weight", None) else 64 ) num_in_ch = state_dict["conv_first.weight"].shape[1] in_chans = num_in_ch if "conv_last.weight" in state_keys: num_out_ch = state_dict["conv_last.weight"].shape[0] else: num_out_ch = num_in_ch upscale = 1 if upsampler == "nearest+conv": upsample_keys = [ x for x in state_keys if "conv_up" in x and "bias" not in x ] for upsample_key in upsample_keys: upscale *= 2 elif upsampler == "pixelshuffle": upsample_keys = [ x for x in state_keys if "upsample" in x and "conv" not in x and "bias" not in x ] for upsample_key in upsample_keys: shape = state_dict[upsample_key].shape[0] upscale *= math.sqrt(shape // num_feat) upscale = int(upscale) elif upsampler == "pixelshuffledirect": upscale = int( math.sqrt(state_dict["upsample.0.bias"].shape[0] // num_out_ch) ) max_layer_num = 0 max_block_num = 0 for key in state_keys: result = re.match(r"layers.(\d*).blocks.(\d*).norm1.weight", key) if result: layer_num, block_num = result.groups() max_layer_num = max(max_layer_num, int(layer_num)) max_block_num = max(max_block_num, int(block_num)) depth = [max_block_num + 1 for _ in range(max_layer_num + 1)] if "layers.0.blocks.1.attn.temperature" in state_keys: num_heads_num = state_dict["layers.0.blocks.1.attn.temperature"].shape[0] num_heads = [num_heads_num for _ in range(max_layer_num + 1)] else: num_heads = depth embed_dim = state_dict["conv_first.weight"].shape[0] expansion_factor = float( state_dict["layers.0.blocks.0.ffn.fc1.weight"].shape[0] / embed_dim ) # TODO: could actually count the layers, but this should do if "layers.0.conv.4.weight" in state_keys: resi_connection = "3conv" else: resi_connection = "1conv" if "layers.0.blocks.2.attn.attn_mask_0" in state_keys: attn_mask_0_x, attn_mask_0_y, attn_mask_0_z = state_dict[ "layers.0.blocks.2.attn.attn_mask_0" ].shape img_size = int(math.sqrt(attn_mask_0_x * attn_mask_0_y)) if "layers.0.blocks.0.attn.attns.0.rpe_biases" in state_keys: split_sizes = ( state_dict["layers.0.blocks.0.attn.attns.0.rpe_biases"][-1] + 1 ) split_size = [int(x) for x in split_sizes] self.in_nc = num_in_ch self.out_nc = num_out_ch self.num_feat = num_feat self.embed_dim = embed_dim self.num_heads = num_heads self.depth = depth self.scale = upscale self.upsampler = upsampler self.img_size = img_size self.img_range = img_range self.expansion_factor = expansion_factor self.resi_connection = resi_connection self.split_size = split_size self.supports_fp16 = False # Too much weirdness to support this at the moment self.supports_bfp16 = True self.min_size_restriction = 16 num_in_ch = in_chans num_out_ch = in_chans num_feat = 64 self.img_range = img_range if in_chans == 3: rgb_mean = (0.4488, 0.4371, 0.4040) self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) else: self.mean = torch.zeros(1, 1, 1, 1) self.upscale = upscale self.upsampler = upsampler # ------------------------- 1, Shallow Feature Extraction ------------------------- # self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1) # ------------------------- 2, Deep Feature Extraction ------------------------- # self.num_layers = len(depth) self.use_chk = use_chk self.num_features = ( self.embed_dim ) = embed_dim # num_features for consistency with other models heads = num_heads self.before_RG = nn.Sequential( Rearrange("b c h w -> b (h w) c"), nn.LayerNorm(embed_dim) ) curr_dim = embed_dim dpr = [ x.item() for x in torch.linspace(0, drop_path_rate, np.sum(depth)) ] # stochastic depth decay rule self.layers = nn.ModuleList() for i in range(self.num_layers): layer = ResidualGroup( dim=embed_dim, num_heads=heads[i], reso=img_size, split_size=split_size, expansion_factor=expansion_factor, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_paths=dpr[sum(depth[:i]) : sum(depth[: i + 1])], act_layer=act_layer, norm_layer=norm_layer, depth=depth[i], use_chk=use_chk, resi_connection=resi_connection, rg_idx=i, ) self.layers.append(layer) self.norm = norm_layer(curr_dim) # build the last conv layer in deep feature extraction if resi_connection == "1conv": self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1) elif resi_connection == "3conv": # to save parameters and memory self.conv_after_body = nn.Sequential( nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True), nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True), nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1), ) # ------------------------- 3, Reconstruction ------------------------- # if self.upsampler == "pixelshuffle": # for classical SR self.conv_before_upsample = nn.Sequential( nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True) ) self.upsample = Upsample(upscale, num_feat) self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) elif self.upsampler == "pixelshuffledirect": # for lightweight SR (to save parameters) self.upsample = UpsampleOneStep( upscale, embed_dim, num_out_ch, (img_size, img_size) ) self.apply(self._init_weights) self.load_state_dict(state_dict, strict=True) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance( m, (nn.LayerNorm, nn.BatchNorm2d, nn.GroupNorm, nn.InstanceNorm2d) ): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def forward_features(self, x): _, _, H, W = x.shape x_size = [H, W] x = self.before_RG(x) for layer in self.layers: x = layer(x, x_size) x = self.norm(x) x = rearrange(x, "b (h w) c -> b c h w", h=H, w=W) return x def forward(self, x): """ Input: x: (B, C, H, W) """ self.mean = self.mean.type_as(x) x = (x - self.mean) * self.img_range if self.upsampler == "pixelshuffle": # for image SR x = self.conv_first(x) x = self.conv_after_body(self.forward_features(x)) + x x = self.conv_before_upsample(x) x = self.conv_last(self.upsample(x)) elif self.upsampler == "pixelshuffledirect": # for lightweight SR x = self.conv_first(x) x = self.conv_after_body(self.forward_features(x)) + x x = self.upsample(x) x = x / self.img_range + self.mean return x