import gradio as gr import random import os # import json import time import shared import modules.config # import fooocus_version import modules.html import modules.async_worker as worker import modules.constants as constants import modules.flags as flags import modules.gradio_hijack as grh import modules.style_sorter as style_sorter import modules.meta_parser import args_manager import copy from modules.sdxl_styles import legal_style_names from modules.private_logger import get_current_html_path from modules.ui_gradio_extensions import reload_javascript from modules.auth import auth_enabled, check_auth # from modules.util import is_json # def get_task(*args): # args = list(args) # args.pop(0) # return worker.AsyncTask(args=args) # def generate_clicked(task): # import ldm_patched.modules.model_management as model_management # with model_management.interrupt_processing_mutex: # model_management.interrupt_processing = False # # outputs=[progress_html, progress_window, progress_gallery, gallery] # execution_start_time = time.perf_counter() # finished = False # yield gr.update(visible=True, value=modules.html.make_progress_html(1, 'Waiting for task to start ...')), \ # gr.update(visible=True, value=None), \ # gr.update(visible=False, value=None), \ # gr.update(visible=False) # worker.async_tasks.append(task) # while not finished: # time.sleep(0.01) # if len(task.yields) > 0: # flag, product = task.yields.pop(0) # if flag == 'preview': # # help bad internet connection by skipping duplicated preview # if len(task.yields) > 0: # if we have the next item # if task.yields[0][0] == 'preview': # if the next item is also a preview # # print('Skipped one preview for better internet connection.') # continue # percentage, title, image = product # yield gr.update(visible=True, value=modules.html.make_progress_html(percentage, title)), \ # gr.update(visible=True, value=image) if image is not None else gr.update(), \ # gr.update(), \ # gr.update(visible=False) # if flag == 'results': # yield gr.update(visible=True), \ # gr.update(visible=True), \ # gr.update(visible=True, value=product), \ # gr.update(visible=False) # if flag == 'finish': # yield gr.update(visible=False), \ # gr.update(visible=False), \ # gr.update(visible=False), \ # gr.update(visible=True, value=product) # finished = True # # delete Fooocus temp images, only keep gradio temp images # if args_manager.args.disable_image_log: # for filepath in product: # if isinstance(filepath, str) and os.path.exists(filepath): # os.remove(filepath) # execution_time = time.perf_counter() - execution_start_time # print(f'Total time: {execution_time:.2f} seconds') # return reload_javascript() title = 'AI Describe Image' if isinstance(args_manager.args.preset, str): title += ' ' + args_manager.args.preset shared.gradio_root = gr.Blocks( title=title, css=modules.html.css).queue() with shared.gradio_root: # currentTask = gr.State(worker.AsyncTask(args=[])) with gr.Row(): with gr.Column(scale=2): # with gr.Row(): # progress_window = grh.Image(label='Preview', show_label=True, visible=False, height=768, # elem_classes=['main_view']) # progress_gallery = gr.Gallery(label='Finished Images', show_label=True, object_fit='contain', # height=768, visible=False, elem_classes=['main_view', 'image_gallery']) # progress_html = gr.HTML(value=modules.html.make_progress_html(32, 'Progress 32%'), visible=False, # elem_id='progress-bar', elem_classes='progress-bar') # gallery = gr.Gallery(label='Gallery', show_label=False, object_fit='contain', visible=True, height=768, # elem_classes=['resizable_area', 'main_view', 'final_gallery', 'image_gallery'], # elem_id='final_gallery') with gr.Row(visible=True) as image_input_panel: with gr.Tabs(): # with gr.TabItem(label='Upscale or Variation') as uov_tab: # with gr.Row(): # with gr.Column(): # uov_input_image = grh.Image(label='Drag above image to here', source='upload', type='numpy') # with gr.Column(): # uov_method = gr.Radio(label='Upscale or Variation:', choices=flags.uov_list, value=flags.disabled) # gr.HTML('\U0001F4D4 Document') # with gr.TabItem(label='Image Prompt') as ip_tab: # with gr.Row(): # ip_images = [] # ip_types = [] # ip_stops = [] # ip_weights = [] # ip_ctrls = [] # ip_ad_cols = [] # for _ in range(flags.controlnet_image_count): # with gr.Column(): # ip_image = grh.Image(label='Image', source='upload', type='numpy', show_label=False, height=300) # ip_images.append(ip_image) # ip_ctrls.append(ip_image) # with gr.Column(visible=False) as ad_col: # with gr.Row(): # default_end, default_weight = flags.default_parameters[flags.default_ip] # ip_stop = gr.Slider(label='Stop At', minimum=0.0, maximum=1.0, step=0.001, value=default_end) # ip_stops.append(ip_stop) # ip_ctrls.append(ip_stop) # ip_weight = gr.Slider(label='Weight', minimum=0.0, maximum=2.0, step=0.001, value=default_weight) # ip_weights.append(ip_weight) # ip_ctrls.append(ip_weight) # ip_type = gr.Radio(label='Type', choices=flags.ip_list, value=flags.default_ip, container=False) # ip_types.append(ip_type) # ip_ctrls.append(ip_type) # ip_type.change(lambda x: flags.default_parameters[x], inputs=[ip_type], outputs=[ip_stop, ip_weight], queue=False, show_progress=False) # ip_ad_cols.append(ad_col) # ip_advanced = gr.Checkbox(label='Advanced', value=False, container=False) # gr.HTML('* \"Image Prompt\" is powered by Fooocus Image Mixture Engine (v1.0.1). \U0001F4D4 Document') # def ip_advance_checked(x): # return [gr.update(visible=x)] * len(ip_ad_cols) + \ # [flags.default_ip] * len(ip_types) + \ # [flags.default_parameters[flags.default_ip][0]] * len(ip_stops) + \ # [flags.default_parameters[flags.default_ip][1]] * len(ip_weights) # ip_advanced.change(ip_advance_checked, inputs=ip_advanced, # outputs=ip_ad_cols + ip_types + ip_stops + ip_weights, # queue=False, show_progress=False) # with gr.TabItem(label='Inpaint or Outpaint') as inpaint_tab: # with gr.Row(): # inpaint_input_image = grh.Image(label='Drag inpaint or outpaint image to here', source='upload', type='numpy', tool='sketch', height=500, brush_color="#FFFFFF", elem_id='inpaint_canvas') # inpaint_mask_image = grh.Image(label='Mask Upload', source='upload', type='numpy', height=500, visible=False) # with gr.Row(): # inpaint_additional_prompt = gr.Textbox(placeholder="Describe what you want to inpaint.", elem_id='inpaint_additional_prompt', label='Inpaint Additional Prompt', visible=False) # outpaint_selections = gr.CheckboxGroup(choices=['Left', 'Right', 'Top', 'Bottom'], value=[], label='Outpaint Direction') # inpaint_mode = gr.Dropdown(choices=modules.flags.inpaint_options, value=modules.flags.inpaint_option_default, label='Method') # example_inpaint_prompts = gr.Dataset(samples=modules.config.example_inpaint_prompts, label='Additional Prompt Quick List', components=[inpaint_additional_prompt], visible=False) # gr.HTML('* Powered by Fooocus Inpaint Engine \U0001F4D4 Document') # example_inpaint_prompts.click(lambda x: x[0], inputs=example_inpaint_prompts, outputs=inpaint_additional_prompt, show_progress=False, queue=False) with gr.TabItem(label='Describe') as desc_tab: with gr.Row(): with gr.Column(): desc_input_image = grh.Image(label='Drag any image to here', source='upload', type='numpy') with gr.Column(): # with gr.Row(elem_classes='type_row'): with gr.Row(): prompt = gr.Textbox(label="Output", show_label=True, elem_id='positive_prompt', container=True, autofocus=True, show_copy_button=True, interactive=True) default_prompt = modules.config.default_prompt if isinstance(default_prompt, str) and default_prompt != '': shared.gradio_root.load(lambda: default_prompt, outputs=prompt) # with gr.Column(scale=3, min_width=0): # generate_button = gr.Button(label="Generate", value="Generate", elem_classes='type_row', elem_id='generate_button', visible=True) # load_parameter_button = gr.Button(label="Load Parameters", value="Load Parameters", elem_classes='type_row', elem_id='load_parameter_button', visible=False) # skip_button = gr.Button(label="Skip", value="Skip", elem_classes='type_row_half', visible=False) # stop_button = gr.Button(label="Stop", value="Stop", elem_classes='type_row_half', elem_id='stop_button', visible=False) # def stop_clicked(currentTask): # import ldm_patched.modules.model_management as model_management # currentTask.last_stop = 'stop' # if (currentTask.processing): # model_management.interrupt_current_processing() # return currentTask # def skip_clicked(currentTask): # import ldm_patched.modules.model_management as model_management # currentTask.last_stop = 'skip' # if (currentTask.processing): # model_management.interrupt_current_processing() # return currentTask # stop_button.click(stop_clicked, inputs=currentTask, outputs=currentTask, queue=False, show_progress=False, _js='cancelGenerateForever') # skip_button.click(skip_clicked, inputs=currentTask, outputs=currentTask, queue=False, show_progress=False) # with gr.Row(elem_classes='advanced_check_row'): # # input_image_checkbox = gr.Checkbox(label='Input Image', value=False, container=False, elem_classes='min_check') # advanced_checkbox = gr.Checkbox(label='Advanced', value=modules.config.default_advanced_checkbox, container=False, elem_classes='min_check') with gr.Row(): desc_method = gr.Radio( label='Content Type', choices=[flags.desc_type_photo, flags.desc_type_anime], value=flags.desc_type_photo) desc_btn = gr.Button(value='Describe this Image into Prompt') # gr.HTML('\U0001F4D4 Document') # with gr.TabItem(label='Metadata') as load_tab: # with gr.Column(): # metadata_input_image = grh.Image(label='Drag any image generated by Fooocus here', source='upload', type='filepath') # metadata_json = gr.JSON(label='Metadata') # metadata_import_button = gr.Button(value='Apply Metadata') # def trigger_metadata_preview(filepath): # parameters, metadata_scheme = modules.meta_parser.read_info_from_image(filepath) # results = {} # if parameters is not None: # results['parameters'] = parameters # if isinstance(metadata_scheme, flags.MetadataScheme): # results['metadata_scheme'] = metadata_scheme.value # return results # metadata_input_image.upload(trigger_metadata_preview, inputs=metadata_input_image, # outputs=metadata_json, queue=False, show_progress=True) switch_js = "(x) => {if(x){viewer_to_bottom(100);viewer_to_bottom(500);}else{viewer_to_top();} return x;}" down_js = "() => {viewer_to_bottom();}" # input_image_checkbox.change(lambda x: gr.update(visible=x), inputs=input_image_checkbox, # outputs=image_input_panel, queue=False, show_progress=False, _js=switch_js) # ip_advanced.change(lambda: None, queue=False, show_progress=False, _js=down_js) # current_tab = gr.Textbox(value='desc', visible=False) # # uov_tab.select(lambda: 'uov', outputs=current_tab, queue=False, _js=down_js, show_progress=False) # # inpaint_tab.select(lambda: 'inpaint', outputs=current_tab, queue=False, _js=down_js, show_progress=False) # # ip_tab.select(lambda: 'ip', outputs=current_tab, queue=False, _js=down_js, show_progress=False) # desc_tab.select(lambda: 'desc', outputs=current_tab, queue=False, _js=down_js, show_progress=False) # with gr.Column(scale=1, visible=modules.config.default_advanced_checkbox) as advanced_column: # with gr.Tab(label='Setting'): # performance_selection = gr.Radio(label='Performance', # choices=modules.flags.performance_selections, # value=modules.config.default_performance) # aspect_ratios_selection = gr.Radio(label='Aspect Ratios', choices=modules.config.available_aspect_ratios, # value=modules.config.default_aspect_ratio, info='width × height', # elem_classes='aspect_ratios') # image_number = gr.Slider(label='Image Number', minimum=1, maximum=modules.config.default_max_image_number, step=1, value=modules.config.default_image_number) # output_format = gr.Radio(label='Output Format', # choices=modules.flags.output_formats, # value=modules.config.default_output_format) # negative_prompt = gr.Textbox(label='Negative Prompt', show_label=True, placeholder="Type prompt here.", # info='Describing what you do not want to see.', lines=2, # elem_id='negative_prompt', # value=modules.config.default_prompt_negative) # seed_random = gr.Checkbox(label='Random', value=True) # image_seed = gr.Textbox(label='Seed', value=0, max_lines=1, visible=False) # workaround for https://github.com/gradio-app/gradio/issues/5354 # def random_checked(r): # return gr.update(visible=not r) # def refresh_seed(r, seed_string): # if r: # return random.randint(constants.MIN_SEED, constants.MAX_SEED) # else: # try: # seed_value = int(seed_string) # if constants.MIN_SEED <= seed_value <= constants.MAX_SEED: # return seed_value # except ValueError: # pass # return random.randint(constants.MIN_SEED, constants.MAX_SEED) # seed_random.change(random_checked, inputs=[seed_random], outputs=[image_seed], # queue=False, show_progress=False) # def update_history_link(): # if args_manager.args.disable_image_log: # return gr.update(value='') # return gr.update(value=f'\U0001F4DA History Log') # history_link = gr.HTML() # shared.gradio_root.load(update_history_link, outputs=history_link, queue=False, show_progress=False) # with gr.Tab(label='Style'): # style_sorter.try_load_sorted_styles( # style_names=legal_style_names, # default_selected=modules.config.default_styles) # style_search_bar = gr.Textbox(show_label=False, container=False, # placeholder="\U0001F50E Type here to search styles ...", # value="", # label='Search Styles') # style_selections = gr.CheckboxGroup(show_label=False, container=False, # choices=copy.deepcopy(style_sorter.all_styles), # value=copy.deepcopy(modules.config.default_styles), # label='Selected Styles', # elem_classes=['style_selections']) # gradio_receiver_style_selections = gr.Textbox(elem_id='gradio_receiver_style_selections', visible=False) # shared.gradio_root.load(lambda: gr.update(choices=copy.deepcopy(style_sorter.all_styles)), # outputs=style_selections) # style_search_bar.change(style_sorter.search_styles, # inputs=[style_selections, style_search_bar], # outputs=style_selections, # queue=False, # show_progress=False).then( # lambda: None, _js='()=>{refresh_style_localization();}') # gradio_receiver_style_selections.input(style_sorter.sort_styles, # inputs=style_selections, # outputs=style_selections, # queue=False, # show_progress=False).then( # lambda: None, _js='()=>{refresh_style_localization();}') # with gr.Tab(label='Model'): # with gr.Group(): # with gr.Row(): # base_model = gr.Dropdown(label='Base Model (SDXL only)', choices=modules.config.model_filenames, value=modules.config.default_base_model_name, show_label=True) # refiner_model = gr.Dropdown(label='Refiner (SDXL or SD 1.5)', choices=['None'] + modules.config.model_filenames, value=modules.config.default_refiner_model_name, show_label=True) # refiner_switch = gr.Slider(label='Refiner Switch At', minimum=0.1, maximum=1.0, step=0.0001, # info='Use 0.4 for SD1.5 realistic models; ' # 'or 0.667 for SD1.5 anime models; ' # 'or 0.8 for XL-refiners; ' # 'or any value for switching two SDXL models.', # value=modules.config.default_refiner_switch, # visible=modules.config.default_refiner_model_name != 'None') # refiner_model.change(lambda x: gr.update(visible=x != 'None'), # inputs=refiner_model, outputs=refiner_switch, show_progress=False, queue=False) # with gr.Group(): # lora_ctrls = [] # for i, (n, v) in enumerate(modules.config.default_loras): # with gr.Row(): # lora_enabled = gr.Checkbox(label='Enable', value=True, # elem_classes=['lora_enable', 'min_check'], scale=1) # lora_model = gr.Dropdown(label=f'LoRA {i + 1}', # choices=['None'] + modules.config.lora_filenames, value=n, # elem_classes='lora_model', scale=5) # lora_weight = gr.Slider(label='Weight', minimum=modules.config.default_loras_min_weight, # maximum=modules.config.default_loras_max_weight, step=0.01, value=v, # elem_classes='lora_weight', scale=5) # lora_ctrls += [lora_enabled, lora_model, lora_weight] # with gr.Row(): # model_refresh = gr.Button(label='Refresh', value='\U0001f504 Refresh All Files', variant='secondary', elem_classes='refresh_button') # with gr.Tab(label='Advanced'): # guidance_scale = gr.Slider(label='Guidance Scale', minimum=1.0, maximum=30.0, step=0.01, # value=modules.config.default_cfg_scale, # info='Higher value means style is cleaner, vivider, and more artistic.') # sharpness = gr.Slider(label='Image Sharpness', minimum=0.0, maximum=30.0, step=0.001, # value=modules.config.default_sample_sharpness, # info='Higher value means image and texture are sharper.') # gr.HTML('\U0001F4D4 Document') # dev_mode = gr.Checkbox(label='Developer Debug Mode', value=False, container=False) # with gr.Column(visible=False) as dev_tools: # with gr.Tab(label='Debug Tools'): # adm_scaler_positive = gr.Slider(label='Positive ADM Guidance Scaler', minimum=0.1, maximum=3.0, # step=0.001, value=1.5, info='The scaler multiplied to positive ADM (use 1.0 to disable). ') # adm_scaler_negative = gr.Slider(label='Negative ADM Guidance Scaler', minimum=0.1, maximum=3.0, # step=0.001, value=0.8, info='The scaler multiplied to negative ADM (use 1.0 to disable). ') # adm_scaler_end = gr.Slider(label='ADM Guidance End At Step', minimum=0.0, maximum=1.0, # step=0.001, value=0.3, # info='When to end the guidance from positive/negative ADM. ') # refiner_swap_method = gr.Dropdown(label='Refiner swap method', value=flags.refiner_swap_method, # choices=['joint', 'separate', 'vae']) # adaptive_cfg = gr.Slider(label='CFG Mimicking from TSNR', minimum=1.0, maximum=30.0, step=0.01, # value=modules.config.default_cfg_tsnr, # info='Enabling Fooocus\'s implementation of CFG mimicking for TSNR ' # '(effective when real CFG > mimicked CFG).') # sampler_name = gr.Dropdown(label='Sampler', choices=flags.sampler_list, # value=modules.config.default_sampler) # scheduler_name = gr.Dropdown(label='Scheduler', choices=flags.scheduler_list, # value=modules.config.default_scheduler) # generate_image_grid = gr.Checkbox(label='Generate Image Grid for Each Batch', # info='(Experimental) This may cause performance problems on some computers and certain internet conditions.', # value=False) # overwrite_step = gr.Slider(label='Forced Overwrite of Sampling Step', # minimum=-1, maximum=200, step=1, # value=modules.config.default_overwrite_step, # info='Set as -1 to disable. For developer debugging.') # overwrite_switch = gr.Slider(label='Forced Overwrite of Refiner Switch Step', # minimum=-1, maximum=200, step=1, # value=modules.config.default_overwrite_switch, # info='Set as -1 to disable. For developer debugging.') # overwrite_width = gr.Slider(label='Forced Overwrite of Generating Width', # minimum=-1, maximum=2048, step=1, value=-1, # info='Set as -1 to disable. For developer debugging. ' # 'Results will be worse for non-standard numbers that SDXL is not trained on.') # overwrite_height = gr.Slider(label='Forced Overwrite of Generating Height', # minimum=-1, maximum=2048, step=1, value=-1, # info='Set as -1 to disable. For developer debugging. ' # 'Results will be worse for non-standard numbers that SDXL is not trained on.') # overwrite_vary_strength = gr.Slider(label='Forced Overwrite of Denoising Strength of "Vary"', # minimum=-1, maximum=1.0, step=0.001, value=-1, # info='Set as negative number to disable. For developer debugging.') # overwrite_upscale_strength = gr.Slider(label='Forced Overwrite of Denoising Strength of "Upscale"', # minimum=-1, maximum=1.0, step=0.001, value=-1, # info='Set as negative number to disable. For developer debugging.') # disable_preview = gr.Checkbox(label='Disable Preview', value=False, # info='Disable preview during generation.') # disable_intermediate_results = gr.Checkbox(label='Disable Intermediate Results', # value=modules.config.default_performance == 'Extreme Speed', # interactive=modules.config.default_performance != 'Extreme Speed', # info='Disable intermediate results during generation, only show final gallery.') # disable_seed_increment = gr.Checkbox(label='Disable seed increment', # info='Disable automatic seed increment when image number is > 1.', # value=False) # # if not args_manager.args.disable_metadata: # # save_metadata_to_images = gr.Checkbox(label='Save Metadata to Images', value=modules.config.default_save_metadata_to_images, # # info='Adds parameters to generated images allowing manual regeneration.') # # metadata_scheme = gr.Radio(label='Metadata Scheme', choices=flags.metadata_scheme, value=modules.config.default_metadata_scheme, # # info='Image Prompt parameters are not included. Use png and a1111 for compatibility with Civitai.', # # visible=modules.config.default_save_metadata_to_images) # # save_metadata_to_images.change(lambda x: gr.update(visible=x), inputs=[save_metadata_to_images], outputs=[metadata_scheme], # # queue=False, show_progress=False) # # with gr.Tab(label='Control'): # # debugging_cn_preprocessor = gr.Checkbox(label='Debug Preprocessors', value=False, # # info='See the results from preprocessors.') # # skipping_cn_preprocessor = gr.Checkbox(label='Skip Preprocessors', value=False, # # info='Do not preprocess images. (Inputs are already canny/depth/cropped-face/etc.)') # # mixing_image_prompt_and_vary_upscale = gr.Checkbox(label='Mixing Image Prompt and Vary/Upscale', # # value=False) # # mixing_image_prompt_and_inpaint = gr.Checkbox(label='Mixing Image Prompt and Inpaint', # # value=False) # # controlnet_softness = gr.Slider(label='Softness of ControlNet', minimum=0.0, maximum=1.0, # # step=0.001, value=0.25, # # info='Similar to the Control Mode in A1111 (use 0.0 to disable). ') # # with gr.Tab(label='Canny'): # # canny_low_threshold = gr.Slider(label='Canny Low Threshold', minimum=1, maximum=255, # # step=1, value=64) # # canny_high_threshold = gr.Slider(label='Canny High Threshold', minimum=1, maximum=255, # # step=1, value=128) # # with gr.Tab(label='Inpaint'): # # debugging_inpaint_preprocessor = gr.Checkbox(label='Debug Inpaint Preprocessing', value=False) # # inpaint_disable_initial_latent = gr.Checkbox(label='Disable initial latent in inpaint', value=False) # # inpaint_engine = gr.Dropdown(label='Inpaint Engine', # # value=modules.config.default_inpaint_engine_version, # # choices=flags.inpaint_engine_versions, # # info='Version of Fooocus inpaint model') # # inpaint_strength = gr.Slider(label='Inpaint Denoising Strength', # # minimum=0.0, maximum=1.0, step=0.001, value=1.0, # # info='Same as the denoising strength in A1111 inpaint. ' # # 'Only used in inpaint, not used in outpaint. ' # # '(Outpaint always use 1.0)') # # inpaint_respective_field = gr.Slider(label='Inpaint Respective Field', # # minimum=0.0, maximum=1.0, step=0.001, value=0.618, # # info='The area to inpaint. ' # # 'Value 0 is same as "Only Masked" in A1111. ' # # 'Value 1 is same as "Whole Image" in A1111. ' # # 'Only used in inpaint, not used in outpaint. ' # # '(Outpaint always use 1.0)') # # inpaint_erode_or_dilate = gr.Slider(label='Mask Erode or Dilate', # # minimum=-64, maximum=64, step=1, value=0, # # info='Positive value will make white area in the mask larger, ' # # 'negative value will make white area smaller.' # # '(default is 0, always process before any mask invert)') # # inpaint_mask_upload_checkbox = gr.Checkbox(label='Enable Mask Upload', value=False) # # invert_mask_checkbox = gr.Checkbox(label='Invert Mask', value=False) # # inpaint_ctrls = [debugging_inpaint_preprocessor, inpaint_disable_initial_latent, inpaint_engine, # # inpaint_strength, inpaint_respective_field, # # inpaint_mask_upload_checkbox, invert_mask_checkbox, inpaint_erode_or_dilate] # # inpaint_mask_upload_checkbox.change(lambda x: gr.update(visible=x), # # inputs=inpaint_mask_upload_checkbox, # # outputs=inpaint_mask_image, queue=False, show_progress=False) # with gr.Tab(label='FreeU'): # freeu_enabled = gr.Checkbox(label='Enabled', value=False) # freeu_b1 = gr.Slider(label='B1', minimum=0, maximum=2, step=0.01, value=1.01) # freeu_b2 = gr.Slider(label='B2', minimum=0, maximum=2, step=0.01, value=1.02) # freeu_s1 = gr.Slider(label='S1', minimum=0, maximum=4, step=0.01, value=0.99) # freeu_s2 = gr.Slider(label='S2', minimum=0, maximum=4, step=0.01, value=0.95) # freeu_ctrls = [freeu_enabled, freeu_b1, freeu_b2, freeu_s1, freeu_s2] # def dev_mode_checked(r): # return gr.update(visible=r) # dev_mode.change(dev_mode_checked, inputs=[dev_mode], outputs=[dev_tools], # queue=False, show_progress=False) # def model_refresh_clicked(): # modules.config.update_all_model_names() # results = [gr.update(choices=modules.config.model_filenames)] # results += [gr.update(choices=['None'] + modules.config.model_filenames)] # for i in range(modules.config.default_max_lora_number): # results += [gr.update(interactive=True), gr.update(choices=['None'] + modules.config.lora_filenames), gr.update()] # return results # model_refresh.click(model_refresh_clicked, [], [base_model, refiner_model] + lora_ctrls, # queue=False, show_progress=False) # performance_selection.change(lambda x: [gr.update(interactive=x != 'Extreme Speed')] * 11 + # [gr.update(visible=x != 'Extreme Speed')] * 1 + # [gr.update(interactive=x != 'Extreme Speed', value=x == 'Extreme Speed', )] * 1, # inputs=performance_selection, # outputs=[ # guidance_scale, sharpness, adm_scaler_end, adm_scaler_positive, # adm_scaler_negative, refiner_switch, refiner_model, sampler_name, # scheduler_name, adaptive_cfg, refiner_swap_method, negative_prompt, disable_intermediate_results # ], queue=False, show_progress=False) # output_format.input(lambda x: gr.update(output_format=x), inputs=output_format) # advanced_checkbox.change(lambda x: gr.update(visible=x), advanced_checkbox, advanced_column, # queue=False, show_progress=False) \ # .then(fn=lambda: None, _js='refresh_grid_delayed', queue=False, show_progress=False) # def inpaint_mode_change(mode): # assert mode in modules.flags.inpaint_options # # inpaint_additional_prompt, outpaint_selections, example_inpaint_prompts, # # inpaint_disable_initial_latent, inpaint_engine, # # inpaint_strength, inpaint_respective_field # if mode == modules.flags.inpaint_option_detail: # return [ # gr.update(visible=True), gr.update(visible=False, value=[]), # gr.Dataset.update(visible=True, samples=modules.config.example_inpaint_prompts), # False, 'None', 0.5, 0.0 # ] # if mode == modules.flags.inpaint_option_modify: # return [ # gr.update(visible=True), gr.update(visible=False, value=[]), # gr.Dataset.update(visible=False, samples=modules.config.example_inpaint_prompts), # True, modules.config.default_inpaint_engine_version, 1.0, 0.0 # ] # return [ # gr.update(visible=False, value=''), gr.update(visible=True), # gr.Dataset.update(visible=False, samples=modules.config.example_inpaint_prompts), # False, modules.config.default_inpaint_engine_version, 1.0, 0.618 # ] # inpaint_mode.input(inpaint_mode_change, inputs=inpaint_mode, outputs=[ # inpaint_additional_prompt, outpaint_selections, example_inpaint_prompts, # inpaint_disable_initial_latent, inpaint_engine, # inpaint_strength, inpaint_respective_field # ], show_progress=False, queue=False) # ctrls = [currentTask, generate_image_grid] # ctrls += [ # prompt, negative_prompt, style_selections, # performance_selection, aspect_ratios_selection, image_number, output_format, image_seed, sharpness, guidance_scale # ] # ctrls += [base_model, refiner_model, refiner_switch] + lora_ctrls # # ctrls += [input_image_checkbox, current_tab] # # ctrls += [uov_method, uov_input_image] # # ctrls += [outpaint_selections, inpaint_input_image, inpaint_additional_prompt, inpaint_mask_image] # ctrls += [disable_preview, disable_intermediate_results, disable_seed_increment] # ctrls += [adm_scaler_positive, adm_scaler_negative, adm_scaler_end, adaptive_cfg] # ctrls += [sampler_name, scheduler_name] # ctrls += [overwrite_step, overwrite_switch, overwrite_width, overwrite_height, overwrite_vary_strength] # ctrls += [overwrite_upscale_strength, mixing_image_prompt_and_vary_upscale, mixing_image_prompt_and_inpaint] # ctrls += [debugging_cn_preprocessor, skipping_cn_preprocessor, canny_low_threshold, canny_high_threshold] # ctrls += [refiner_swap_method, controlnet_softness] # ctrls += freeu_ctrls # ctrls += inpaint_ctrls # if not args_manager.args.disable_metadata: # ctrls += [save_metadata_to_images, metadata_scheme] # ctrls += ip_ctrls # state_is_generating = gr.State(False) # def parse_meta(raw_prompt_txt, is_generating): # loaded_json = None # if is_json(raw_prompt_txt): # loaded_json = json.loads(raw_prompt_txt) # if loaded_json is None: # if is_generating: # return gr.update(), gr.update(), gr.update() # else: # return gr.update(), gr.update(visible=True), gr.update(visible=False) # return json.dumps(loaded_json), gr.update(visible=False), gr.update(visible=True) # prompt.input(parse_meta, inputs=[prompt, state_is_generating], outputs=[prompt, generate_button, load_parameter_button], queue=False, show_progress=False) # load_data_outputs = [advanced_checkbox, image_number, prompt, negative_prompt, style_selections, # performance_selection, overwrite_step, overwrite_switch, aspect_ratios_selection, # overwrite_width, overwrite_height, guidance_scale, sharpness, adm_scaler_positive, # adm_scaler_negative, adm_scaler_end, refiner_swap_method, adaptive_cfg, base_model, # refiner_model, refiner_switch, sampler_name, scheduler_name, seed_random, image_seed, # generate_button, load_parameter_button] + freeu_ctrls + lora_ctrls # load_parameter_button.click(modules.meta_parser.load_parameter_button_click, inputs=[prompt, state_is_generating], outputs=load_data_outputs, queue=False, show_progress=False) # # def trigger_metadata_import(filepath, state_is_generating): # # parameters, metadata_scheme = modules.meta_parser.read_info_from_image(filepath) # # if parameters is None: # # print('Could not find metadata in the image!') # # parsed_parameters = {} # # else: # # metadata_parser = modules.meta_parser.get_metadata_parser(metadata_scheme) # # parsed_parameters = metadata_parser.parse_json(parameters) # # return modules.meta_parser.load_parameter_button_click(parsed_parameters, state_is_generating) # # metadata_import_button.click(trigger_metadata_import, inputs=[metadata_input_image, state_is_generating], outputs=load_data_outputs, queue=False, show_progress=True) \ # # .then(style_sorter.sort_styles, inputs=style_selections, outputs=style_selections, queue=False, show_progress=False) # generate_button.click(lambda: (gr.update(visible=True, interactive=True), gr.update(visible=True, interactive=True), gr.update(visible=False, interactive=False), [], True), # outputs=[stop_button, skip_button, generate_button, gallery, state_is_generating]) \ # .then(fn=refresh_seed, inputs=[seed_random, image_seed], outputs=image_seed) \ # .then(fn=get_task, inputs=ctrls, outputs=currentTask) \ # .then(fn=generate_clicked, inputs=currentTask, outputs=[progress_html, progress_window, progress_gallery, gallery]) \ # .then(lambda: (gr.update(visible=True, interactive=True), gr.update(visible=False, interactive=False), gr.update(visible=False, interactive=False), False), # outputs=[generate_button, stop_button, skip_button, state_is_generating]) \ # .then(fn=update_history_link, outputs=history_link) \ # .then(fn=lambda: None, _js='playNotification').then(fn=lambda: None, _js='refresh_grid_delayed') for notification_file in ['notification.ogg', 'notification.mp3']: if os.path.exists(notification_file): gr.Audio(interactive=False, value=notification_file, elem_id='audio_notification', visible=False) break def trigger_describe(mode, img): if mode == flags.desc_type_photo: from extras.interrogate import default_interrogator as default_interrogator_photo return default_interrogator_photo(img), ["Fooocus V2", "Fooocus Enhance", "Fooocus Sharp"] if mode == flags.desc_type_anime: from extras.wd14tagger import default_interrogator as default_interrogator_anime return default_interrogator_anime(img), ["Fooocus V2", "Fooocus Masterpiece"] return mode, ["Fooocus V2"] desc_btn.click(trigger_describe, inputs=[desc_method, desc_input_image], outputs=prompt, show_progress=True, queue=True) def dump_default_english_config(): from modules.localization import dump_english_config dump_english_config(grh.all_components) # dump_default_english_config() shared.gradio_root.launch( inbrowser=args_manager.args.in_browser, server_name=args_manager.args.listen, server_port=args_manager.args.port, share=args_manager.args.share, auth=check_auth if (args_manager.args.share or args_manager.args.listen) and auth_enabled else None, allowed_paths=[modules.config.path_outputs], blocked_paths=[constants.AUTH_FILENAME] )