from __future__ import print_function import os import numpy as np ##### NEW # !pip --no-cache-dir install -U --force-reinstall matplotlib import tkinter import matplotlib matplotlib.use('Agg') ###### NEW end import matplotlib.pyplot as plt import matplotlib.patches as patches from skimage import io from random import randint import glob import time import argparse from filterpy.kalman import KalmanFilter def get_color(): # r = randint(0, 255) # g = randint(0, 255) # b = randint(0, 255) color = (randint(0, 255), randint(0, 255), randint(0, 255)) return color def linear_assignment(cost_matrix): try: import lap #linear assignment problem solver _, x, y = lap.lapjv(cost_matrix, extend_cost = True) return np.array([[y[i],i] for i in x if i>=0]) except ImportError: from scipy.optimize import linear_sum_assignment x,y = linear_sum_assignment(cost_matrix) return np.array(list(zip(x,y))) """From SORT: Computes IOU between two boxes in the form [x1,y1,x2,y2]""" def iou_batch(bb_test, bb_gt): bb_gt = np.expand_dims(bb_gt, 0) bb_test = np.expand_dims(bb_test, 1) xx1 = np.maximum(bb_test[...,0], bb_gt[..., 0]) yy1 = np.maximum(bb_test[..., 1], bb_gt[..., 1]) xx2 = np.minimum(bb_test[..., 2], bb_gt[..., 2]) yy2 = np.minimum(bb_test[..., 3], bb_gt[..., 3]) w = np.maximum(0., xx2 - xx1) h = np.maximum(0., yy2 - yy1) wh = w * h o = wh / ((bb_test[..., 2] - bb_test[..., 0]) * (bb_test[..., 3] - bb_test[..., 1]) + (bb_gt[..., 2] - bb_gt[..., 0]) * (bb_gt[..., 3] - bb_gt[..., 1]) - wh) return(o) """Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form [x,y,s,r] where x,y is the center of the box and s is the scale/area and r is the aspect ratio""" def convert_bbox_to_z(bbox): w = bbox[2] - bbox[0] h = bbox[3] - bbox[1] x = bbox[0] + w/2. y = bbox[1] + h/2. s = w * h #scale is just area r = w / float(h) return np.array([x, y, s, r]).reshape((4, 1)) """Takes a bounding box in the centre form [x,y,s,r] and returns it in the form [x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right""" def convert_x_to_bbox(x, score=None): w = np.sqrt(x[2] * x[3]) h = x[2] / w if(score==None): return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.]).reshape((1,4)) else: return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.,score]).reshape((1,5)) """This class represents the internal state of individual tracked objects observed as bbox.""" class KalmanBoxTracker(object): count = 0 def __init__(self, bbox): """ Initialize a tracker using initial bounding box Parameter 'bbox' must have 'detected class' int number at the -1 position. """ self.kf = KalmanFilter(dim_x=7, dim_z=4) self.kf.F = np.array([[1,0,0,0,1,0,0],[0,1,0,0,0,1,0],[0,0,1,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]) self.kf.H = np.array([[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]]) self.kf.R[2:,2:] *= 10. # R: Covariance matrix of measurement noise (set to high for noisy inputs -> more 'inertia' of boxes') self.kf.P[4:,4:] *= 1000. #give high uncertainty to the unobservable initial velocities self.kf.P *= 10. self.kf.Q[-1,-1] *= 0.5 # Q: Covariance matrix of process noise (set to high for erratically moving things) self.kf.Q[4:,4:] *= 0.5 self.kf.x[:4] = convert_bbox_to_z(bbox) # STATE VECTOR self.time_since_update = 0 self.id = KalmanBoxTracker.count KalmanBoxTracker.count += 1 self.history = [] self.hits = 0 self.hit_streak = 0 self.age = 0 self.centroidarr = [] CX = (bbox[0]+bbox[2])//2 CY = (bbox[1]+bbox[3])//2 self.centroidarr.append((CX,CY)) #keep yolov5 detected class information self.detclass = bbox[5] def update(self, bbox): """ Updates the state vector with observed bbox """ self.time_since_update = 0 self.history = [] self.hits += 1 self.hit_streak += 1 self.kf.update(convert_bbox_to_z(bbox)) self.detclass = bbox[5] CX = (bbox[0]+bbox[2])//2 CY = (bbox[1]+bbox[3])//2 self.centroidarr.append((CX,CY)) def predict(self): """ Advances the state vector and returns the predicted bounding box estimate """ if((self.kf.x[6]+self.kf.x[2])<=0): self.kf.x[6] *= 0.0 self.kf.predict() self.age += 1 if(self.time_since_update>0): self.hit_streak = 0 self.time_since_update += 1 self.history.append(convert_x_to_bbox(self.kf.x)) # bbox=self.history[-1] # CX = (bbox[0]+bbox[2])/2 # CY = (bbox[1]+bbox[3])/2 # self.centroidarr.append((CX,CY)) return self.history[-1] def get_state(self): """ Returns the current bounding box estimate # test arr1 = np.array([[1,2,3,4]]) arr2 = np.array([0]) arr3 = np.expand_dims(arr2, 0) np.concatenate((arr1,arr3), axis=1) """ arr_detclass = np.expand_dims(np.array([self.detclass]), 0) arr_u_dot = np.expand_dims(self.kf.x[4],0) arr_v_dot = np.expand_dims(self.kf.x[5],0) arr_s_dot = np.expand_dims(self.kf.x[6],0) return np.concatenate((convert_x_to_bbox(self.kf.x), arr_detclass, arr_u_dot, arr_v_dot, arr_s_dot), axis=1) def associate_detections_to_trackers(detections, trackers, iou_threshold = 0.3): """ Assigns detections to tracked object (both represented as bounding boxes) Returns 3 lists of 1. matches, 2. unmatched_detections 3. unmatched_trackers """ if(len(trackers)==0): return np.empty((0,2),dtype=int), np.arange(len(detections)), np.empty((0,5),dtype=int) iou_matrix = iou_batch(detections, trackers) if min(iou_matrix.shape) > 0: a = (iou_matrix > iou_threshold).astype(np.int32) if a.sum(1).max() == 1 and a.sum(0).max() ==1: matched_indices = np.stack(np.where(a), axis=1) else: matched_indices = linear_assignment(-iou_matrix) else: matched_indices = np.empty(shape=(0,2)) unmatched_detections = [] for d, det in enumerate(detections): if(d not in matched_indices[:,0]): unmatched_detections.append(d) unmatched_trackers = [] for t, trk in enumerate(trackers): if(t not in matched_indices[:,1]): unmatched_trackers.append(t) #filter out matched with low IOU matches = [] for m in matched_indices: if(iou_matrix[m[0], m[1]]= self.min_hits or self.frame_count <= self.min_hits): ret.append(np.concatenate((d, [trk.id+1])).reshape(1,-1)) #+1'd because MOT benchmark requires positive value i -= 1 #remove dead tracklet if(trk.time_since_update >self.max_age): self.trackers.pop(i) if unique_color: self.color_list.pop(i) if(len(ret) > 0): return np.concatenate(ret) return np.empty((0,6)) def parse_args(): """Parse input arguments.""" parser = argparse.ArgumentParser(description='SORT demo') parser.add_argument('--display', dest='display', help='Display online tracker output (slow) [False]',action='store_true') parser.add_argument("--seq_path", help="Path to detections.", type=str, default='data') parser.add_argument("--phase", help="Subdirectory in seq_path.", type=str, default='train') parser.add_argument("--max_age", help="Maximum number of frames to keep alive a track without associated detections.", type=int, default=1) parser.add_argument("--min_hits", help="Minimum number of associated detections before track is initialised.", type=int, default=3) parser.add_argument("--iou_threshold", help="Minimum IOU for match.", type=float, default=0.3) args = parser.parse_args() return args if __name__ == '__main__': # all train args = parse_args() display = args.display phase = args.phase total_time = 0.0 total_frames = 0 colours = np.random.rand(32, 3) #used only for display if(display): if not os.path.exists('mot_benchmark'): print('\n\tERROR: mot_benchmark link not found!\n\n Create a symbolic link to the MOT benchmark\n (https://motchallenge.net/data/2D_MOT_2015/#download). E.g.:\n\n $ ln -s /path/to/MOT2015_challenge/2DMOT2015 mot_benchmark\n\n') exit() plt.ion() fig = plt.figure() ax1 = fig.add_subplot(111, aspect='equal') if not os.path.exists('output'): os.makedirs('output') pattern = os.path.join(args.seq_path, phase, '*', 'det', 'det.txt') for seq_dets_fn in glob.glob(pattern): mot_tracker = Sort(max_age=args.max_age, min_hits=args.min_hits, iou_threshold=args.iou_threshold) #create instance of the SORT tracker seq_dets = np.loadtxt(seq_dets_fn, delimiter=',') seq = seq_dets_fn[pattern.find('*'):].split(os.path.sep)[0] with open(os.path.join('output', '%s.txt'%(seq)),'w') as out_file: print("Processing %s."%(seq)) for frame in range(int(seq_dets[:,0].max())): frame += 1 #detection and frame numbers begin at 1 dets = seq_dets[seq_dets[:, 0]==frame, 2:7] dets[:, 2:4] += dets[:, 0:2] #convert to [x1,y1,w,h] to [x1,y1,x2,y2] total_frames += 1 if(display): fn = os.path.join('mot_benchmark', phase, seq, 'img1', '%06d.jpg'%(frame)) im =io.imread(fn) ax1.imshow(im) plt.title(seq + ' Tracked Targets') start_time = time.time() trackers = mot_tracker.update(dets) cycle_time = time.time() - start_time total_time += cycle_time for d in trackers: print('%d,%d,%.2f,%.2f,%.2f,%.2f,1,-1,-1,-1'%(frame,d[4],d[0],d[1],d[2]-d[0],d[3]-d[1]),file=out_file) if(display): d = d.astype(np.int32) ax1.add_patch(patches.Rectangle((d[0],d[1]),d[2]-d[0],d[3]-d[1],fill=False,lw=3,ec=colours[d[4]%32,:])) if(display): fig.canvas.flush_events() plt.draw() ax1.cla() print("Total Tracking took: %.3f seconds for %d frames or %.1f FPS" % (total_time, total_frames, total_frames / total_time)) if(display): print("Note: to get real runtime results run without the option: --display")