import torch from torch.autograd import Function from torch.autograd.function import once_differentiable from torch.distributions import constraints from torch.distributions.exp_family import ExponentialFamily __all__ = ["Dirichlet"] # This helper is exposed for testing. def _Dirichlet_backward(x, concentration, grad_output): total = concentration.sum(-1, True).expand_as(concentration) grad = torch._dirichlet_grad(x, concentration, total) return grad * (grad_output - (x * grad_output).sum(-1, True)) class _Dirichlet(Function): @staticmethod def forward(ctx, concentration): x = torch._sample_dirichlet(concentration) ctx.save_for_backward(x, concentration) return x @staticmethod @once_differentiable def backward(ctx, grad_output): x, concentration = ctx.saved_tensors return _Dirichlet_backward(x, concentration, grad_output) class Dirichlet(ExponentialFamily): r""" Creates a Dirichlet distribution parameterized by concentration :attr:`concentration`. Example:: >>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> m = Dirichlet(torch.tensor([0.5, 0.5])) >>> m.sample() # Dirichlet distributed with concentration [0.5, 0.5] tensor([ 0.1046, 0.8954]) Args: concentration (Tensor): concentration parameter of the distribution (often referred to as alpha) """ arg_constraints = { "concentration": constraints.independent(constraints.positive, 1) } support = constraints.simplex has_rsample = True def __init__(self, concentration, validate_args=None): if concentration.dim() < 1: raise ValueError( "`concentration` parameter must be at least one-dimensional." ) self.concentration = concentration batch_shape, event_shape = concentration.shape[:-1], concentration.shape[-1:] super().__init__(batch_shape, event_shape, validate_args=validate_args) def expand(self, batch_shape, _instance=None): new = self._get_checked_instance(Dirichlet, _instance) batch_shape = torch.Size(batch_shape) new.concentration = self.concentration.expand(batch_shape + self.event_shape) super(Dirichlet, new).__init__( batch_shape, self.event_shape, validate_args=False ) new._validate_args = self._validate_args return new def rsample(self, sample_shape=()): shape = self._extended_shape(sample_shape) concentration = self.concentration.expand(shape) return _Dirichlet.apply(concentration) def log_prob(self, value): if self._validate_args: self._validate_sample(value) return ( torch.xlogy(self.concentration - 1.0, value).sum(-1) + torch.lgamma(self.concentration.sum(-1)) - torch.lgamma(self.concentration).sum(-1) ) @property def mean(self): return self.concentration / self.concentration.sum(-1, True) @property def mode(self): concentrationm1 = (self.concentration - 1).clamp(min=0.0) mode = concentrationm1 / concentrationm1.sum(-1, True) mask = (self.concentration < 1).all(axis=-1) mode[mask] = torch.nn.functional.one_hot( mode[mask].argmax(axis=-1), concentrationm1.shape[-1] ).to(mode) return mode @property def variance(self): con0 = self.concentration.sum(-1, True) return ( self.concentration * (con0 - self.concentration) / (con0.pow(2) * (con0 + 1)) ) def entropy(self): k = self.concentration.size(-1) a0 = self.concentration.sum(-1) return ( torch.lgamma(self.concentration).sum(-1) - torch.lgamma(a0) - (k - a0) * torch.digamma(a0) - ((self.concentration - 1.0) * torch.digamma(self.concentration)).sum(-1) ) @property def _natural_params(self): return (self.concentration,) def _log_normalizer(self, x): return x.lgamma().sum(-1) - torch.lgamma(x.sum(-1))