import gradio as gr #Step 1 input1 = gr.inputs.Textbox(label="F1") input2 = gr.inputs.Textbox(label="F2") input3 = gr.inputs.Textbox(label="F3") input4 = gr.inputs.Textbox(label="F4") input5 = gr.inputs.Textbox(label="F5") input6 = gr.inputs.Textbox(label="F6") input7 = gr.inputs.Textbox(label="F7") input8 = gr.inputs.Textbox(label="F8") #output component output1 = gr.outputs.Textbox(label = "Predicted housing prices") #define a function to accept inputs and return outputs def predict_house(input1, input2, input3, input4, input5, input6, input7, input8): #data processing import pandas as pd data = pd.read_csv("housing.csv") ## 1. split data to get train and test set from sklearn.model_selection import train_test_split train_set, test_set = train_test_split(data, test_size=0.2, random_state=10) ## 2. clean the missing values train_set_clean = train_set.dropna(subset=["total_bedrooms"]) train_set_clean ## 2. derive training features and training labels train_labels = train_set_clean["median_house_value"].copy() # get labels for output label Y train_features = train_set_clean.drop("median_house_value", axis=1) # drop labels to get features X for training set ## 4. scale the numeric features in training set from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() ## define the transformer scaler.fit(train_features) ## call .fit() method to calculate the min and max value for each column in dataset train_features_normalized = scaler.transform(train_features) train_features_normalized #model training from sklearn.linear_model import LinearRegression ## import the LinearRegression Function lin_reg = LinearRegression() ## Initialize the class lin_reg.fit(train_features_normalized, train_labels) # feed the training data X, and label Y for supervised learning #model predictions import numpy as np test_feature = np.array([[input1, input2, input3, input4, input5, input6, input7, input8]]) normalized_test_features = scaler.transform(test_feature) training_predictions = lin_reg.predict(normalized_test_features) return training_predictions #Step 4: Build connection between front end and back end gr.Interface(fn = predict_house, inputs = [input1, input2, input3, input4, input5, input6, input7, input8], outputs = [output1]).launch(debug = True)