import os os.system('pip3 install openmim') os.system('mim install mmcv-full==1.7.0') os.system('pip3 install mmpose') os.system('pip3 install mmdet') os.system('pip3 install gradio') from demo.model import Model_all import gradio as gr from demo.demos import create_demo_keypose, create_demo_sketch, create_demo_draw import torch import subprocess import shlex from huggingface_hub import hf_hub_url urls = { 'TencentARC/T2I-Adapter':['models/t2iadapter_keypose_sd14v1.pth', 'models/t2iadapter_seg_sd14v1.pth', 'models/t2iadapter_sketch_sd14v1.pth'], 'CompVis/stable-diffusion-v-1-4-original':['sd-v1-4.ckpt'], 'andite/anything-v4.0':['anything-v4.0-pruned.ckpt'], } urls_mmpose = [ 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth', 'https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth', ] if os.path.exists('models') == False: os.mkdir('models') for repo in urls: files = urls[repo] for file in files: url = hf_hub_url(repo, file) name_ckp = url.split('/')[-1] save_path = os.path.join('models',name_ckp) if os.path.exists(save_path) == False: subprocess.run(shlex.split(f'wget {url} -O {save_path}')) for url in urls_mmpose: name_ckp = url.split('/')[-1] save_path = os.path.join('models',name_ckp) if os.path.exists(save_path) == False: subprocess.run(shlex.split(f'wget {url} -O {save_path}')) device = 'cuda' if torch.cuda.is_available() else 'cpu' model = Model_all(device) DESCRIPTION = '''# T2I-Adapter (Sketch & Keypose) [Paper](https://arxiv.org/abs/2302.08453) [GitHub](https://github.com/TencentARC/T2I-Adapter) This gradio demo is for a simple experience of T2I-Adapter: - Keypose/Sketch to Image Generation - Image to Image Generation - Support the base model of Stable Diffusion v1.4 and Anything 4.0 ''' with gr.Blocks(css='style.css') as demo: gr.Markdown(DESCRIPTION) with gr.Tabs(): with gr.TabItem('Keypose'): create_demo_keypose(model.process_keypose) with gr.TabItem('Sketch'): create_demo_sketch(model.process_sketch) with gr.TabItem('Draw'): create_demo_draw(model.process_draw) demo.queue(api_open=False).launch(server_name='0.0.0.0')