# demo inspired by https://huggingface.co/spaces/lambdalabs/image-mixer-demo import argparse import copy import os import shlex import subprocess from functools import partial from itertools import chain import cv2 import gradio as gr import torch from basicsr.utils import tensor2img from huggingface_hub import hf_hub_url from pytorch_lightning import seed_everything from torch import autocast from ldm.inference_base import (DEFAULT_NEGATIVE_PROMPT, diffusion_inference, get_adapters, get_sd_models) from ldm.modules.extra_condition import api from ldm.modules.extra_condition.api import (ExtraCondition, get_adapter_feature, get_cond_model) torch.set_grad_enabled(False) supported_cond = ['style', 'color', 'sketch', 'openpose', 'depth', 'canny'] # download the checkpoints urls = { 'TencentARC/T2I-Adapter': [ 'models/t2iadapter_keypose_sd14v1.pth', 'models/t2iadapter_color_sd14v1.pth', 'models/t2iadapter_openpose_sd14v1.pth', 'models/t2iadapter_seg_sd14v1.pth', 'models/t2iadapter_sketch_sd14v1.pth', 'models/t2iadapter_depth_sd14v1.pth', 'third-party-models/body_pose_model.pth', "models/t2iadapter_style_sd14v1.pth", "models/t2iadapter_canny_sd14v1.pth", 'third-party-models/table5_pidinet.pth' ], 'runwayml/stable-diffusion-v1-5': ['v1-5-pruned-emaonly.ckpt'], 'andite/anything-v4.0': ['anything-v4.0-pruned.ckpt', 'anything-v4.0.vae.pt'], } if os.path.exists('models') == False: os.mkdir('models') for repo in urls: files = urls[repo] for file in files: url = hf_hub_url(repo, file) name_ckp = url.split('/')[-1] save_path = os.path.join('models', name_ckp) if os.path.exists(save_path) == False: subprocess.run(shlex.split(f'wget {url} -O {save_path}')) # config parser = argparse.ArgumentParser() parser.add_argument( '--sd_ckpt', type=str, default='models/v1-5-pruned-emaonly.ckpt', help='path to checkpoint of stable diffusion model, both .ckpt and .safetensor are supported', ) parser.add_argument( '--vae_ckpt', type=str, default=None, help='vae checkpoint, anime SD models usually have seperate vae ckpt that need to be loaded', ) global_opt = parser.parse_args() global_opt.config = 'configs/stable-diffusion/sd-v1-inference.yaml' for cond_name in supported_cond: setattr(global_opt, f'{cond_name}_adapter_ckpt', f'models/t2iadapter_{cond_name}_sd14v1.pth') global_opt.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") global_opt.max_resolution = 512 * 512 global_opt.sampler = 'ddim' global_opt.cond_weight = 1.0 global_opt.C = 4 global_opt.f = 8 # stable-diffusion model sd_model, sampler = get_sd_models(global_opt) # adapters and models to processing condition inputs adapters = {} cond_models = {} torch.cuda.empty_cache() def run(*args): with torch.inference_mode(), \ sd_model.ema_scope(), \ autocast('cuda'): inps = [] for i in range(0, len(args) - 8, len(supported_cond)): inps.append(args[i:i + len(supported_cond)]) opt = copy.deepcopy(global_opt) opt.prompt, opt.neg_prompt, opt.scale, opt.n_samples, opt.seed, opt.steps, opt.resize_short_edge, opt.cond_tau \ = args[-8:] conds = [] activated_conds = [] ims1 = [] ims2 = [] for idx, (b, im1, im2, cond_weight) in enumerate(zip(*inps)): if idx > 1: if im1 is not None or im2 is not None: if im1 is not None: h, w, _ = im1.shape else: h, w, _ = im2.shape break # resize all the images to the same size for idx, (b, im1, im2, cond_weight) in enumerate(zip(*inps)): if idx == 0: ims1.append(im1) ims2.append(im2) continue if im1 is not None: im1 = cv2.resize(im1, (w, h), interpolation=cv2.INTER_CUBIC) if im2 is not None: im2 = cv2.resize(im2, (w, h), interpolation=cv2.INTER_CUBIC) ims1.append(im1) ims2.append(im2) for idx, (b, _, _, cond_weight) in enumerate(zip(*inps)): cond_name = supported_cond[idx] if b == 'Nothing': if cond_name in adapters: adapters[cond_name]['model'] = adapters[cond_name]['model'].cpu() else: activated_conds.append(cond_name) if cond_name in adapters: adapters[cond_name]['model'] = adapters[cond_name]['model'].to(opt.device) else: adapters[cond_name] = get_adapters(opt, getattr(ExtraCondition, cond_name)) adapters[cond_name]['cond_weight'] = cond_weight process_cond_module = getattr(api, f'get_cond_{cond_name}') if b == 'Image': if cond_name not in cond_models: cond_models[cond_name] = get_cond_model(opt, getattr(ExtraCondition, cond_name)) conds.append(process_cond_module(opt, ims1[idx], 'image', cond_models[cond_name])) else: conds.append(process_cond_module(opt, ims2[idx], cond_name, None)) adapter_features, append_to_context = get_adapter_feature( conds, [adapters[cond_name] for cond_name in activated_conds]) output_conds = [] for cond in conds: output_conds.append(tensor2img(cond, rgb2bgr=False)) ims = [] seed_everything(opt.seed) for _ in range(opt.n_samples): result = diffusion_inference(opt, sd_model, sampler, adapter_features, append_to_context) ims.append(tensor2img(result, rgb2bgr=False)) # Clear GPU memory cache so less likely to OOM torch.cuda.empty_cache() return ims, output_conds def change_visible(im1, im2, val): outputs = {} if val == "Image": outputs[im1] = gr.update(visible=True) outputs[im2] = gr.update(visible=False) elif val == "Nothing": outputs[im1] = gr.update(visible=False) outputs[im2] = gr.update(visible=False) else: outputs[im1] = gr.update(visible=False) outputs[im2] = gr.update(visible=True) return outputs DESCRIPTION = '# [Composable T2I-Adapter](https://github.com/TencentARC/T2I-Adapter)' DESCRIPTION += f'
Gradio demo for **T2I-Adapter**: [[GitHub]](https://github.com/TencentARC/T2I-Adapter), [[Paper]](https://arxiv.org/abs/2302.08453). If T2I-Adapter is helpful, please help to ⭐ the [Github Repo](https://github.com/TencentARC/T2I-Adapter) and recommend it to your friends 😊
' DESCRIPTION += f'For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
' with gr.Blocks(css='style.css') as demo: gr.Markdown(DESCRIPTION) btns = [] ims1 = [] ims2 = [] cond_weights = [] with gr.Row(): with gr.Column(scale=1.9): with gr.Box(): gr.Markdown("