Spaces:
Runtime error
Runtime error
File size: 14,395 Bytes
b3478e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
import argparse
import logging
import os
import os.path as osp
import time
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
from basicsr.utils import (get_env_info, get_root_logger, get_time_str,
img2tensor, scandir, tensor2img)
from basicsr.utils.options import copy_opt_file, dict2str
from omegaconf import OmegaConf
from PIL import Image
from ldm.data.dataset_coco import dataset_coco_mask_color
from dist_util import get_bare_model, get_dist_info, init_dist, master_only
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.dpm_solver import DPMSolverSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.modules.encoders.adapter import Adapter
from ldm.util import instantiate_from_config
from ldm.modules.structure_condition.model_edge import pidinet
def load_model_from_config(config, ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
model.cuda()
model.eval()
return model
@master_only
def mkdir_and_rename(path):
"""mkdirs. If path exists, rename it with timestamp and create a new one.
Args:
path (str): Folder path.
"""
if osp.exists(path):
new_name = path + '_archived_' + get_time_str()
print(f'Path already exists. Rename it to {new_name}', flush=True)
os.rename(path, new_name)
os.makedirs(path, exist_ok=True)
os.makedirs(osp.join(experiments_root, 'models'))
os.makedirs(osp.join(experiments_root, 'training_states'))
os.makedirs(osp.join(experiments_root, 'visualization'))
def load_resume_state(opt):
resume_state_path = None
if opt.auto_resume:
state_path = osp.join('experiments', opt.name, 'training_states')
if osp.isdir(state_path):
states = list(scandir(state_path, suffix='state', recursive=False, full_path=False))
if len(states) != 0:
states = [float(v.split('.state')[0]) for v in states]
resume_state_path = osp.join(state_path, f'{max(states):.0f}.state')
opt.resume_state_path = resume_state_path
# else:
# if opt['path'].get('resume_state'):
# resume_state_path = opt['path']['resume_state']
if resume_state_path is None:
resume_state = None
else:
device_id = torch.cuda.current_device()
resume_state = torch.load(resume_state_path, map_location=lambda storage, loc: storage.cuda(device_id))
# check_resume(opt, resume_state['iter'])
return resume_state
parser = argparse.ArgumentParser()
parser.add_argument(
"--bsize",
type=int,
default=8,
help="the prompt to render"
)
parser.add_argument(
"--epochs",
type=int,
default=10000,
help="the prompt to render"
)
parser.add_argument(
"--num_workers",
type=int,
default=8,
help="the prompt to render"
)
parser.add_argument(
"--use_shuffle",
type=bool,
default=True,
help="the prompt to render"
)
parser.add_argument(
"--dpm_solver",
action='store_true',
help="use dpm_solver sampling",
)
parser.add_argument(
"--plms",
action='store_true',
help="use plms sampling",
)
parser.add_argument(
"--auto_resume",
action='store_true',
help="use plms sampling",
)
parser.add_argument(
"--ckpt",
type=str,
default="models/sd-v1-4.ckpt",
help="path to checkpoint of model",
)
parser.add_argument(
"--config",
type=str,
default="configs/stable-diffusion/train_sketch.yaml",
help="path to config which constructs model",
)
parser.add_argument(
"--print_fq",
type=int,
default=100,
help="path to config which constructs model",
)
parser.add_argument(
"--H",
type=int,
default=512,
help="image height, in pixel space",
)
parser.add_argument(
"--W",
type=int,
default=512,
help="image width, in pixel space",
)
parser.add_argument(
"--C",
type=int,
default=4,
help="latent channels",
)
parser.add_argument(
"--f",
type=int,
default=8,
help="downsampling factor",
)
parser.add_argument(
"--ddim_steps",
type=int,
default=50,
help="number of ddim sampling steps",
)
parser.add_argument(
"--n_samples",
type=int,
default=1,
help="how many samples to produce for each given prompt. A.k.a. batch size",
)
parser.add_argument(
"--ddim_eta",
type=float,
default=0.0,
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
)
parser.add_argument(
"--scale",
type=float,
default=7.5,
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
)
parser.add_argument(
"--gpus",
default=[0,1,2,3],
help="gpu idx",
)
parser.add_argument(
'--local_rank',
default=0,
type=int,
help='node rank for distributed training'
)
parser.add_argument(
'--launcher',
default='pytorch',
type=str,
help='node rank for distributed training'
)
parser.add_argument(
'--l_cond',
default=4,
type=int,
help='number of scales'
)
opt = parser.parse_args()
if __name__ == '__main__':
config = OmegaConf.load(f"{opt.config}")
opt.name = config['name']
# distributed setting
init_dist(opt.launcher)
torch.backends.cudnn.benchmark = True
device='cuda'
torch.cuda.set_device(opt.local_rank)
# dataset
path_json_train = 'coco_stuff/mask/annotations/captions_train2017.json'
path_json_val = 'coco_stuff/mask/annotations/captions_val2017.json'
train_dataset = dataset_coco_mask_color(path_json_train,
root_path_im='coco/train2017',
root_path_mask='coco_stuff/mask/train2017_color',
image_size=512
)
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
val_dataset = dataset_coco_mask_color(path_json_val,
root_path_im='coco/val2017',
root_path_mask='coco_stuff/mask/val2017_color',
image_size=512
)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=opt.bsize,
shuffle=(train_sampler is None),
num_workers=opt.num_workers,
pin_memory=True,
sampler=train_sampler)
val_dataloader = torch.utils.data.DataLoader(
val_dataset,
batch_size=1,
shuffle=False,
num_workers=1,
pin_memory=False)
# edge_generator
net_G = pidinet()
ckp = torch.load('models/table5_pidinet.pth', map_location='cpu')['state_dict']
net_G.load_state_dict({k.replace('module.',''):v for k, v in ckp.items()})
net_G.cuda()
# stable diffusion
model = load_model_from_config(config, f"{opt.ckpt}").to(device)
# sketch encoder
model_ad = Adapter(channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True, use_conv=False).to(device)
# to gpus
model_ad = torch.nn.parallel.DistributedDataParallel(
model_ad,
device_ids=[opt.local_rank],
output_device=opt.local_rank)
model = torch.nn.parallel.DistributedDataParallel(
model,
device_ids=[opt.local_rank],
output_device=opt.local_rank)
# device_ids=[torch.cuda.current_device()])
net_G = torch.nn.parallel.DistributedDataParallel(
net_G,
device_ids=[opt.local_rank],
output_device=opt.local_rank)
# device_ids=[torch.cuda.current_device()])
# optimizer
params = list(model_ad.parameters())
optimizer = torch.optim.AdamW(params, lr=config['training']['lr'])
experiments_root = osp.join('experiments', opt.name)
# resume state
resume_state = load_resume_state(opt)
if resume_state is None:
mkdir_and_rename(experiments_root)
start_epoch = 0
current_iter = 0
# WARNING: should not use get_root_logger in the above codes, including the called functions
# Otherwise the logger will not be properly initialized
log_file = osp.join(experiments_root, f"train_{opt.name}_{get_time_str()}.log")
logger = get_root_logger(logger_name='basicsr', log_level=logging.INFO, log_file=log_file)
logger.info(get_env_info())
logger.info(dict2str(config))
else:
# WARNING: should not use get_root_logger in the above codes, including the called functions
# Otherwise the logger will not be properly initialized
log_file = osp.join(experiments_root, f"train_{opt.name}_{get_time_str()}.log")
logger = get_root_logger(logger_name='basicsr', log_level=logging.INFO, log_file=log_file)
logger.info(get_env_info())
logger.info(dict2str(config))
resume_optimizers = resume_state['optimizers']
optimizer.load_state_dict(resume_optimizers)
logger.info(f"Resuming training from epoch: {resume_state['epoch']}, " f"iter: {resume_state['iter']}.")
start_epoch = resume_state['epoch']
current_iter = resume_state['iter']
# copy the yml file to the experiment root
copy_opt_file(opt.config, experiments_root)
# training
logger.info(f'Start training from epoch: {start_epoch}, iter: {current_iter}')
for epoch in range(start_epoch, opt.epochs):
train_dataloader.sampler.set_epoch(epoch)
# train
for _, data in enumerate(train_dataloader):
current_iter += 1
with torch.no_grad():
edge = net_G(data['im'].cuda(non_blocking=True))[-1]
edge = edge>0.5
edge = edge.float()
c = model.module.get_learned_conditioning(data['sentence'])
z = model.module.encode_first_stage((data['im']*2-1.).cuda(non_blocking=True))
z = model.module.get_first_stage_encoding(z)
optimizer.zero_grad()
model.zero_grad()
features_adapter = model_ad(edge)
l_pixel, loss_dict = model(z, c=c, features_adapter = features_adapter)
l_pixel.backward()
optimizer.step()
if (current_iter+1)%opt.print_fq == 0:
logger.info(loss_dict)
# save checkpoint
rank, _ = get_dist_info()
if (rank==0) and ((current_iter+1)%config['training']['save_freq'] == 0):
save_filename = f'model_ad_{current_iter+1}.pth'
save_path = os.path.join(experiments_root, 'models', save_filename)
save_dict = {}
model_ad_bare = get_bare_model(model_ad)
state_dict = model_ad_bare.state_dict()
for key, param in state_dict.items():
if key.startswith('module.'): # remove unnecessary 'module.'
key = key[7:]
save_dict[key] = param.cpu()
torch.save(save_dict, save_path)
# save state
state = {'epoch': epoch, 'iter': current_iter+1, 'optimizers': optimizer.state_dict()}
save_filename = f'{current_iter+1}.state'
save_path = os.path.join(experiments_root, 'training_states', save_filename)
torch.save(state, save_path)
# val
rank, _ = get_dist_info()
if rank==0:
for data in val_dataloader:
with torch.no_grad():
if opt.dpm_solver:
sampler = DPMSolverSampler(model.module)
elif opt.plms:
sampler = PLMSSampler(model.module)
else:
sampler = DDIMSampler(model.module)
print(data['im'].shape)
c = model.module.get_learned_conditioning(data['sentence'])
edge = net_G(data['im'].cuda(non_blocking=True))[-1]
edge = edge>0.5
edge = edge.float()
im_edge = tensor2img(edge)
cv2.imwrite(os.path.join(experiments_root, 'visualization', 'edge_%04d.png'%epoch), im_edge)
features_adapter = model_ad(edge)
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
conditioning=c,
batch_size=opt.n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=model.module.get_learned_conditioning(opt.n_samples * [""]),
eta=opt.ddim_eta,
x_T=None,
features_adapter=features_adapter)
x_samples_ddim = model.module.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy()
for id_sample, x_sample in enumerate(x_samples_ddim):
x_sample = 255.*x_sample
img = x_sample.astype(np.uint8)
img = cv2.putText(img.copy(), data['sentence'][0], (10,30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2)
cv2.imwrite(os.path.join(experiments_root, 'visualization', 'sample_e%04d_s%04d.png'%(epoch, id_sample)), img[:,:,::-1])
break
|