import logging
import textwrap
from typing import Literal, Optional
import gradio as gr
import outlines
import pandas as pd
import spaces
import torch
from peft import PeftConfig, PeftModel
from pydantic import BaseModel, ConfigDict
from transformers import (
AutoModelForCausalLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
MODEL_ID = "rshwndsz/ft-longformer-base-4096"
DEVICE_MAP = "auto"
QUANTIZATION_BITS = 4
TEMPERATURE = 0.0
AVAILABLE_MODELS = [
"rshwndsz/ft-longformer-base-4096",
"rshwndsz/ft-hermes-3-llama-3.2-3b",
"rshwndsz/ft-phi-3.5-mini-instruct",
"rshwndsz/ft-mistral-7b-v0.3-instruct",
"rshwndsz/ft-phi-4",
"rshwndsz/ft_paraphrased-hermes-3-llama-3.2-3b",
"rshwndsz/ft_paraphrased-longformer-base-4096",
"rshwndsz/ft_paraphrased-phi-3.5-mini-instruct",
"rshwndsz/ft_paraphrased-mistral-7b-v0.3-instruct",
"rshwndsz/ft_paraphrased-phi-4",
]
DEFAULT_MODEL_ID = AVAILABLE_MODELS[0]
# Exact SYSTEM_PROMPT from training data
SYSTEM_PROMPT = textwrap.dedent("""
You are an assistant tasked with grading answers to a mind reading ability test. You will be provided with the following information:
1. A story that was presented to participants as context
2. The question that participants were asked to answer
3. A grading scheme to evaluate the answers (Correct Responses:1, incorrect response:0, Incomplete response:0, Irrelevant:0)
4. Grading examples
5. A participant answer
Your task is to grade each answer according to the grading scheme. For each answer, you should:
1. Carefully read and understand the answer and compare it to the grading criteria
2. Assigning an score 1 or 0 for each answer.
""").strip()
# Exact PROMPT_TEMPLATE from training data
PROMPT_TEMPLATE = textwrap.dedent("""
{story}
{question}
{grading_scheme}
{answer}
Score:""").strip()
class ResponseModel(BaseModel):
model_config = ConfigDict(extra="forbid")
score: Literal["0", "1"]
def get_outlines_model(
model_id: str, device_map: str = "auto", quantization_bits: Optional[int] = 4
):
if quantization_bits == 4:
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16,
)
elif quantization_bits == 8:
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
else:
quantization_config = None
if "longformer" in model_id:
hf_model = AutoModelForSequenceClassification.from_pretrained(model_id)
hf_tokenizer = AutoTokenizer.from_pretrained(model_id)
return hf_model, hf_tokenizer
peft_config = PeftConfig.from_pretrained(model_id)
base_model_id = peft_config.base_model_name_or_path
base_model = AutoModelForCausalLM.from_pretrained(
base_model_id,
device_map=device_map,
quantization_config=quantization_config,
)
hf_model = PeftModel.from_pretrained(base_model, model_id)
hf_tokenizer = AutoTokenizer.from_pretrained(
base_model_id, use_fast=True, clean_up_tokenization_spaces=True
)
# Updated for new outlines API
model = outlines.models.Transformers(hf_model, hf_tokenizer)
return model
def format_prompt(story: str, question: str, grading_scheme: str, answer: str) -> str:
# Exact format used during training
prompt = PROMPT_TEMPLATE.format(
story=story.strip(),
question=question.strip(),
grading_scheme=grading_scheme.strip(),
answer=answer.strip(),
)
# Exact concatenation used during training
full_prompt = SYSTEM_PROMPT + "\n" + prompt
return full_prompt
@spaces.GPU
def label_single_response_with_model(model_id, story, question, criteria, response):
prompt = format_prompt(story, question, criteria, response)
if "longformer" in model_id:
model, tokenizer = get_outlines_model(model_id, DEVICE_MAP, QUANTIZATION_BITS)
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
logits = model(**inputs).logits
predicted_class = torch.argmax(logits, dim=1).item()
return str(predicted_class)
else:
model = get_outlines_model(model_id, DEVICE_MAP, QUANTIZATION_BITS)
# Updated for new outlines API
generator = outlines.generate.json(model, ResponseModel)
result = generator(prompt)
return result.score
@spaces.GPU
def label_multi_responses_with_model(
model_id, story, question, criteria, response_file
):
df = pd.read_csv(response_file.name)
assert "response" in df.columns, "CSV must contain a 'response' column."
prompts = [
format_prompt(story, question, criteria, resp) for resp in df["response"]
]
if "longformer" in model_id:
model, tokenizer = get_outlines_model(model_id, DEVICE_MAP, QUANTIZATION_BITS)
inputs = tokenizer(prompts, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
logits = model(**inputs).logits
predicted_classes = torch.argmax(logits, dim=1).tolist()
scores = [str(cls) for cls in predicted_classes]
else:
model = get_outlines_model(model_id, DEVICE_MAP, QUANTIZATION_BITS)
# Updated for new outlines API
generator = outlines.generate.json(model, ResponseModel)
results = generator(prompts)
scores = [r.score for r in results]
df["score"] = scores
return df
def single_response_ui(model_id):
return gr.Interface(
fn=lambda story, question, criteria, response: label_single_response_with_model(
model_id.value, story, question, criteria, response
),
inputs=[
gr.Textbox(label="Story", lines=6),
gr.Textbox(label="Question", lines=2),
gr.Textbox(label="Criteria (Grading Scheme)", lines=4),
gr.Textbox(label="Single Response", lines=3),
],
outputs=gr.Textbox(label="Score"),
live=False,
)
def multi_response_ui(model_id):
return gr.Interface(
fn=lambda story,
question,
criteria,
response_file: label_multi_responses_with_model(
model_id.value, story, question, criteria, response_file
),
inputs=[
gr.Textbox(label="Story", lines=6),
gr.Textbox(label="Question", lines=2),
gr.Textbox(label="Criteria (Grading Scheme)", lines=4),
gr.File(
label="Responses CSV (.csv with 'response' column)", file_types=[".csv"]
),
],
outputs=gr.Dataframe(label="Labeled Responses", type="pandas"),
live=False,
)
with gr.Blocks(title="Zero-Shot Evaluation Grader") as iface:
model_selector = gr.Dropdown(
label="Select Model",
choices=AVAILABLE_MODELS,
value=AVAILABLE_MODELS[0],
)
selected_model_id = gr.State(value=DEFAULT_MODEL_ID)
def update_model_id(choice):
return choice
model_selector.change(
fn=update_model_id, inputs=model_selector, outputs=selected_model_id
)
with gr.Tabs():
with gr.Tab("Single Response"):
single_response_ui(selected_model_id)
with gr.Tab("Batch (CSV)"):
multi_response_ui(selected_model_id)
if __name__ == "__main__":
iface.launch(share=True)