import os import uuid import joblib import json import gradio as gr import pandas as pd from huggingface_hub import CommitScheduler from pathlib import Path # Run the training script placed in the same directory as app.py # The training script will train and persist a logistic regression # model with the filename 'model.joblib' os.system("python train.py") # # Load the freshly trained model from disk insurance_charge_predictor = joblib.load('model.joblib') # # Prepare the logging functionality # log_file = Path("logs/") / f"data_{uuid.uuid4()}.json" # log_folder = log_file.parent # scheduler = CommitScheduler( # repo_id="insurance-charge-logs", # repo_type="dataset", # folder_path=log_folder, # path_in_repo="data", # every=2 # ) # Define the predict function that runs when 'Submit' is clicked or when a API request is made def predict_insurance_charge(age, bmi, children,sex, smoker, region): sample = { 'age': age, 'bmi': bmi, 'children': children, 'sex': sex, 'smoker': smoker, 'region': region } data_point = pd.DataFrame([sample]) prediction = insurance_charge_predictor.predict(data_point).tolist() # While the prediction is made, log both the inputs and outputs to a local log file # While writing to the log file, ensure that the commit scheduler is locked to avoid parallel # access # with scheduler.lock: # with log_file.open("a") as f: # f.write(json.dumps( # { # 'age': age, # 'bmi': bmi, # 'children': children, # 'sex': sex, # 'smoker': smoker, # 'region': region, # 'prediction': prediction[0] # } # )) # f.write("\n") return round(prediction[0],2) # Set up UI components for input and output age_input = gr.Number(label='age') bmi_input = gr.Number(label='bmi') children_input = gr.Number(label='children') sex_input = gr.Dropdown(['female','male'],label='sex') smoker_input = gr.Dropdown(['yes','no'],label='smoker') region_input = gr.Dropdown( ['southeast', 'southwest', 'northwest', 'northeast'], label='region' ) model_output = gr.Label(label="Insurance Charges") # Create the interface demo = gr.Interface( fn=predict_insurance_charge, inputs=[age_input, bmi_input, children_input,sex_input, smoker_input, region_input], outputs=model_output, title="HealthyLife Insurance Charge Prediction", description="This API allows you to predict the estimating insurance charges based on customer attributes", examples=[[33,33.44,5,'male','no','southeast'], [58,25.175,0,'male','no','northeast'], [52,38.380,2,'female','no','northeast']], concurrency_limit=16 ) # Launch with a load balancer demo.queue() demo.launch(share=False)