import json import queue import paho.mqtt.client as mqtt import streamlit as st import matplotlib.pyplot as plt import numpy as np from matplotlib.patches import Rectangle import secrets from time import time # Initialize Streamlit app st.title("Light-mixing Control Panel") # Description and context st.markdown( """ This application accesses a public test demo of a "light-mixer" located in Toronto, ON, Canada (as of 2024-07-27). Send RGB commands to a NeoPixel LED and visualize the spectral sensor data from an AS7341 sensor. For more context, you can refer to this [Colab notebook](https://colab.research.google.com/github/sparks-baird/self-driving-lab-demo/blob/main/notebooks/4.2-paho-mqtt-colab-sdl-demo-test.ipynb) and the [self-driving-lab-demo project](https://github.com/sparks-baird/self-driving-lab-demo). You may also be interested in the Acceleration Consortium's ["Hello World" microcourse](https://ac-microcourses.readthedocs.io/en/latest/courses/hello-world/index.html) for self-driving labs. """ ) max_power = 0.35 max_value = round(max_power * 255) with st.form("mqtt_form"): # MQTT Configuration HIVEMQ_HOST = st.text_input( "Enter your HiveMQ host:", "248cc294c37642359297f75b7b023374.s2.eu.hivemq.cloud", type="password", ) HIVEMQ_USERNAME = st.text_input("Enter your HiveMQ username:", "sgbaird") HIVEMQ_PASSWORD = st.text_input( "Enter your HiveMQ password:", "D.Pq5gYtejYbU#L", type="password" ) PORT = st.number_input( "Enter the port number:", min_value=1, max_value=65535, value=8883 ) # User input for the Pico ID PICO_ID = st.text_input("Enter your Pico ID:", "test", type="password") # Information about the maximum power reduction st.info( f"The upper limit for RGB power levels has been set to {max_value} instead of 255. NeoPixels are bright 😎" ) # Sliders for RGB values R = st.slider("Select the Red value:", min_value=0, max_value=max_value, value=0) G = st.slider("Select the Green value:", min_value=0, max_value=max_value, value=0) B = st.slider("Select the Blue value:", min_value=0, max_value=max_value, value=0) submit_button = st.form_submit_button(label="Send RGB Command") command_topic = f"sdl-demo/picow/{PICO_ID}/GPIO/28/" sensor_data_topic = f"sdl-demo/picow/{PICO_ID}/as7341/" # random session id to keep track of the session and filter out old data experiment_id = secrets.token_hex(4) # 4 bytes = 8 characters sensor_data_file = f"sensor_data-{experiment_id}.json" # TODO: Session ID using st.session_state to have history of commands and sensor data sensor_data_queue = queue.Queue() # Singleton: https://docs.streamlit.io/develop/api-reference/caching-and-state/st.cache_resource @st.cache_resource def create_paho_client(tls=True): client = mqtt.Client(mqtt.CallbackAPIVersion.VERSION2, protocol=mqtt.MQTTv5) if tls: client.tls_set(tls_version=mqtt.ssl.PROTOCOL_TLS_CLIENT) return client # Define setup separately since sensor_data is dynamic def setup_paho_client( client, sensor_data_topic, hostname, username, password=None, port=8883 ): def on_message(client, userdata, msg): sensor_data_queue.put(json.loads(msg.payload)) def on_connect(client, userdata, flags, rc, properties=None): if rc != 0: print("Connected with result code " + str(rc)) client.subscribe(sensor_data_topic, qos=1) client.on_connect = on_connect client.on_message = on_message client.username_pw_set(username, password) client.connect(hostname, port) client.loop_start() # Use a non-blocking loop return client def send_command(client, command_topic, msg): print("Sending command...") result = client.publish(command_topic, json.dumps(msg), qos=2) result.wait_for_publish() # Ensure the message is sent if result.rc == mqtt.MQTT_ERR_SUCCESS: print(f"Command sent: {msg} to topic {command_topic}") else: print(f"Failed to send command: {result.rc}") # Helper function to plot discrete spectral sensor data def plot_spectra(sensor_data): """https://chatgpt.com/share/210d2fee-ca64-45a5-866e-e6df6e56bd1c""" wavelengths = np.array([410, 440, 470, 510, 550, 583, 620, 670]) intensities = np.array( [ sensor_data["ch410"], sensor_data["ch440"], sensor_data["ch470"], sensor_data["ch510"], sensor_data["ch550"], sensor_data["ch583"], sensor_data["ch620"], sensor_data["ch670"], ] ) fig, ax = plt.subplots(figsize=(10, 6)) num_points = 100 # for "fake" color bar effect # Adding rectangles for color bar effect dense_wavelengths = np.linspace(wavelengths.min(), wavelengths.max(), num_points) # rect_height = max(intensities) * 0.02 # Height of the rectangles rect_height = 300 for dw in dense_wavelengths: rect = Rectangle( ( dw - (wavelengths.max() - wavelengths.min()) / num_points / 2, -rect_height * 2, ), (wavelengths.max() - wavelengths.min()) / num_points, rect_height * 3, color=plt.cm.rainbow( (dw - wavelengths.min()) / (wavelengths.max() - wavelengths.min()) ), edgecolor="none", ) ax.add_patch(rect) # Main scatter plot scatter = ax.scatter( wavelengths, intensities, c=wavelengths, cmap="rainbow", edgecolor="k" ) # Adding vertical lines from the x-axis to each point for wavelength, intensity in zip(wavelengths, intensities): ax.vlines(wavelength, 0, intensity, color="gray", linestyle="--", linewidth=1) # Adjust limits and labels with larger font size ax.set_xlim(wavelengths.min() - 10, wavelengths.max() + 10) ax.set_ylim( 0, max(30000, max(intensities) + 15) ) # Ensure the lower y limit is 0 and add buffer with a minimum upper limit of 30000 ax.set_xticks(wavelengths) ax.set_xlabel("Wavelength (nm)", fontsize=14) ax.set_ylabel("Intensity", fontsize=14) ax.set_title("Spectral Intensity vs. Wavelength", fontsize=16) ax.tick_params(axis="both", which="major", labelsize=12) st.pyplot(fig) # Publish button if submit_button: if not PICO_ID or not HIVEMQ_HOST or not HIVEMQ_USERNAME or not HIVEMQ_PASSWORD: st.error("Please enter all required fields.") else: st.info( f"Please wait while the command {R, G, B} for experiment {experiment_id} is sent..." ) client = create_paho_client(tls=True) client = setup_paho_client( client, sensor_data_topic, HIVEMQ_HOST, HIVEMQ_USERNAME, password=HIVEMQ_PASSWORD, port=int(PORT), ) command_msg = {"R": R, "G": G, "B": B, "_experiment_id": experiment_id} session_timeout = time() + 60 send_command(client, command_topic, command_msg) while True and time() < session_timeout: sensor_data = sensor_data_queue.get(True, timeout=15) input_message = sensor_data["_input_message"] received_experiment_id = input_message["_experiment_id"] if sensor_data and received_experiment_id == experiment_id: R1 = input_message["R"] G1 = input_message["G"] B1 = input_message["B"] st.success( f"Command {R1, G1, B1} for experiment {experiment_id} sent successfully!" ) plot_spectra(sensor_data) st.write("Sensor Data Received:", sensor_data) break else: st.warning( f"Received data for experiment {received_experiment_id} instead of {experiment_id}. Retrying..." )