import json import os from pathlib import Path import paho.mqtt.client as mqtt import streamlit as st import matplotlib.pyplot as plt import numpy as np from matplotlib.patches import Rectangle import secrets from time import time, sleep # Initialize Streamlit app st.title("Light-mixing Control Panel") # Description and context st.markdown( """ This application accesses a public test demo located in Toronto, ON, Canada (as of 2024-07-27). For more context, you can refer to this [Colab notebook](https://colab.research.google.com/github/sparks-baird/self-driving-lab-demo/blob/main/notebooks/4.2-paho-mqtt-colab-sdl-demo-test.ipynb) and the [self-driving-lab-demo project](https://github.com/sparks-baird/self-driving-lab-demo). You may also be interested in the Acceleration Consortium's ["Hello World" microcourse](https://ac-microcourses.readthedocs.io/en/latest/courses/hello-world/index.html) for self-driving labs. """ ) max_power = 0.35 max_value = round(max_power * 255) with st.form("mqtt_form"): # MQTT Configuration HIVEMQ_HOST = st.text_input( "Enter your HiveMQ host:", "248cc294c37642359297f75b7b023374.s2.eu.hivemq.cloud", type="password", ) HIVEMQ_USERNAME = st.text_input("Enter your HiveMQ username:", "sgbaird") HIVEMQ_PASSWORD = st.text_input( "Enter your HiveMQ password:", "D.Pq5gYtejYbU#L", type="password" ) PORT = st.number_input( "Enter the port number:", min_value=1, max_value=65535, value=8883 ) # User input for the Pico ID PICO_ID = st.text_input("Enter your Pico ID:", "test", type="password") # Information about the maximum power reduction st.info( f"The upper limit for RGB power levels has been set to {max_value} instead of 255. NeoPixels are bright 😎" ) # Sliders for RGB values R = st.slider("Select the Red value:", min_value=0, max_value=max_value, value=0) G = st.slider("Select the Green value:", min_value=0, max_value=max_value, value=0) B = st.slider("Select the Blue value:", min_value=0, max_value=max_value, value=0) submit_button = st.form_submit_button(label="Send RGB Command") command_topic = f"sdl-demo/picow/{PICO_ID}/GPIO/28/" sensor_data_topic = f"sdl-demo/picow/{PICO_ID}/as7341/" # random session id to keep track of the session and filter out old data experiment_id = secrets.token_hex(4) # 4 bytes = 8 characters sensor_data_file = f"sensor_data-{experiment_id}.json" # TODO: Session ID using st.session_state to have history of commands and sensor data # file_path = Path(sensor_data_file) # file_path.unlink(missing_ok=True) # Singleton: https://docs.streamlit.io/develop/api-reference/caching-and-state/st.cache_resource # (on_message to be set later since filename is dynamic) @st.cache_resource def get_paho_client( sensor_data_topic, hostname, username, password=None, port=8883, tls=True ): client = mqtt.Client(mqtt.CallbackAPIVersion.VERSION2, protocol=mqtt.MQTTv5) def on_connect(client, userdata, flags, rc, properties=None): if rc != 0: print("Connected with result code " + str(rc)) client.subscribe(sensor_data_topic, qos=1) client.on_connect = on_connect if tls: client.tls_set(tls_version=mqtt.ssl.PROTOCOL_TLS_CLIENT) client.username_pw_set(username, password) client.connect(hostname, port) client.loop_start() # Use a non-blocking loop return client def send_and_receive(client, command_topic, msg, queue_timeout=15): print("Sending command...") result = client.publish(command_topic, json.dumps(msg), qos=2) result.wait_for_publish() # Ensure the message is sent if result.rc == mqtt.MQTT_ERR_SUCCESS: print(f"Command sent: {msg} to topic {command_topic}") else: print(f"Failed to send command: {result.rc}") timeout = time() + queue_timeout # Set timeout while True: if time() > timeout: st.error("No sensor data received within the timeout period.") return None if os.path.exists(sensor_data_file): with open(sensor_data_file, "r") as f: sensor_data = json.load(f) file_path = Path(sensor_data_file) file_path.unlink(missing_ok=True) return sensor_data # Helper function to plot discrete spectral sensor data def plot_spectra(sensor_data): """https://chatgpt.com/share/210d2fee-ca64-45a5-866e-e6df6e56bd1c""" wavelengths = np.array([410, 440, 470, 510, 550, 583, 620, 670]) intensities = np.array( [ sensor_data["ch410"], sensor_data["ch440"], sensor_data["ch470"], sensor_data["ch510"], sensor_data["ch550"], sensor_data["ch583"], sensor_data["ch620"], sensor_data["ch670"], ] ) fig, ax = plt.subplots(figsize=(10, 6)) num_points = 100 # for "fake" color bar effect # Adding rectangles for color bar effect dense_wavelengths = np.linspace(wavelengths.min(), wavelengths.max(), num_points) rect_height = max(intensities) * 0.02 # Height of the rectangles for dw in dense_wavelengths: rect = Rectangle( ( dw - (wavelengths.max() - wavelengths.min()) / num_points / 2, -rect_height * 2, ), (wavelengths.max() - wavelengths.min()) / num_points, rect_height * 3, color=plt.cm.rainbow( (dw - wavelengths.min()) / (wavelengths.max() - wavelengths.min()) ), edgecolor="none", ) ax.add_patch(rect) # Main scatter plot scatter = ax.scatter( wavelengths, intensities, c=wavelengths, cmap="rainbow", edgecolor="k" ) # Adding vertical lines from the x-axis to each point for wavelength, intensity in zip(wavelengths, intensities): ax.vlines(wavelength, 0, intensity, color="gray", linestyle="--", linewidth=1) # Adjust limits and labels with larger font size ax.set_xlim(wavelengths.min() - 10, wavelengths.max() + 10) ax.set_ylim( 0, max(intensities) + 15 ) # Ensure the lower y limit is 0 and add buffer ax.set_xticks(wavelengths) ax.set_xlabel("Wavelength (nm)", fontsize=14) ax.set_ylabel("Intensity", fontsize=14) ax.set_title("Spectral Intensity vs. Wavelength", fontsize=16) ax.tick_params(axis="both", which="major", labelsize=12) st.pyplot(fig) # Publish button if submit_button: if not PICO_ID or not HIVEMQ_HOST or not HIVEMQ_USERNAME or not HIVEMQ_PASSWORD: st.error("Please enter all required fields.") else: st.info( f"Please wait while the command {R, G, B} for experiment {experiment_id} is sent..." ) client = get_paho_client( sensor_data_topic, HIVEMQ_HOST, HIVEMQ_USERNAME, password=HIVEMQ_PASSWORD, port=int(PORT), tls=True, ) def on_message(client, userdata, msg): with open(sensor_data_file, "w") as f: json.dump(json.loads(msg.payload), f) client.on_message = on_message command_msg = {"R": R, "G": G, "B": B} sensor_data = send_and_receive( client, command_topic, command_msg, queue_timeout=15 ) if sensor_data: received_cmd = sensor_data["_input_message"] R1 = received_cmd["R"] G1 = received_cmd["G"] B1 = received_cmd["B"] st.success( f"Command {R1, G1, B1} for experiment {experiment_id} sent successfully!" ) plot_spectra(sensor_data) st.write("Sensor Data Received:", sensor_data)