import numpy as np
import gradio as gr
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from surrogate import CrabNetSurrogateModel, PARAM_BOUNDS
from pydantic import (
BaseModel,
ValidationError,
ValidationInfo,
field_validator,
model_validator,
)
model = CrabNetSurrogateModel()
# Define the input parameters
example_parameterization = {
"N": 3,
"alpha": 0.5,
"d_model": 512,
"dim_feedforward": 2048,
"dropout": 0.1,
"emb_scaler": 0.5,
"epochs_step": 10,
"eps": 0.000001,
"fudge": 0.02,
"heads": 4,
"k": 6,
"lr": 0.001,
"pe_resolution": 5000,
"ple_resolution": 5000,
"pos_scaler": 0.5,
"weight_decay": 0,
"batch_size": 32,
"out_hidden4": 128,
"betas1": 0.9,
"betas2": 0.999,
"bias": False,
"criterion": "RobustL1",
"elem_prop": "mat2vec",
"train_frac": 0.5,
}
example_results = model.surrogate_evaluate([example_parameterization])
example_result = example_results[0]
# Initialize and fit scalers for each parameter
scalers = {}
for param_info in PARAM_BOUNDS:
if param_info["type"] == "range":
scaler = MinMaxScaler()
# Fit the scaler using the parameter bounds
scaler.fit([[bound] for bound in param_info["bounds"]])
scalers[param_info["name"]] = scaler
# HACK: Hardcoded
BLINDED_PARAM_BOUNDS = [
{"name": "x1", "type": "range", "bounds": [0.0, 1.0]},
{"name": "x2", "type": "range", "bounds": [0.0, 1.0]},
{"name": "x3", "type": "range", "bounds": [0.0, 1.0]},
{"name": "x4", "type": "range", "bounds": [0.0, 1.0]},
{"name": "x5", "type": "range", "bounds": [0.0, 1.0]},
{"name": "x6", "type": "range", "bounds": [0.0, 1.0]},
{"name": "x7", "type": "range", "bounds": [0.0, 1.0]},
{"name": "x8", "type": "range", "bounds": [0.0, 1.0]},
{"name": "x9", "type": "range", "bounds": [0.0, 1.0]},
{"name": "x10", "type": "range", "bounds": [0.0, 1.0]},
{"name": "x11", "type": "range", "bounds": [0.0, 1.0]},
{"name": "x12", "type": "range", "bounds": [0.0, 1.0]},
{"name": "x13", "type": "range", "bounds": [0.0, 1.0]},
{"name": "x14", "type": "range", "bounds": [0.0, 1.0]},
{"name": "x15", "type": "range", "bounds": [0.0, 1.0]},
{"name": "x16", "type": "range", "bounds": [0.0, 1.0]},
{"name": "x17", "type": "range", "bounds": [0.0, 1.0]},
{"name": "x18", "type": "range", "bounds": [0.0, 1.0]},
{"name": "x19", "type": "range", "bounds": [0.0, 1.0]},
{"name": "x20", "type": "range", "bounds": [0.0, 1.0]},
{"name": "c1", "type": "choice", "values": ["c1_0", "c1_1"]},
{"name": "c2", "type": "choice", "values": ["c2_0", "c2_1"]},
{"name": "c3", "type": "choice", "values": ["c3_0", "c3_1"]},
{"name": "fidelity1", "type": "range", "bounds": [0.0, 1.0]},
]
class BlindedParameterization(BaseModel):
x1: float # int
x2: float
x3: float # int
x4: float # int
x5: float
x6: float
x7: float # int
x8: float
x9: float
x10: float # int
x11: float # int
x12: float
x13: float # int
x14: float # int
x15: float
x16: float # int
x17: float # int
x18: float # int
x19: float
x20: float
c1: str # bool
c2: str
c3: str
fidelity1: float
@field_validator("*")
def check_bounds(cls, v: int, info: ValidationInfo) -> int:
param = next(
(item for item in BLINDED_PARAM_BOUNDS if item["name"] == info.field_name),
None,
)
if param is None:
return v
if param["type"] == "range":
min_val, max_val = param["bounds"]
if not min_val <= v <= max_val:
raise ValueError(
f"{info.field_name} must be between {min_val} and {max_val}"
)
elif param["type"] == "choice":
if v not in param["values"]:
raise ValueError(f"{info.field_name} must be one of {param['values']}")
return v
@model_validator(mode="after")
def check_constraints(self) -> "BlindedParameterization":
if self.x19 > self.x20:
raise ValueError(
f"Received x19={self.x19} which should be less than x20={self.x20}"
)
if self.x6 + self.x15 > 1.0:
raise ValueError(
f"Received x6={self.x6} and x15={self.x15} which should sum to less than or equal to 1.0" # noqa: E501
)
# Conversion from original to blinded representation
def convert_to_blinded(params):
blinded_params = {}
numeric_index = 1
choice_index = 1
for param in PARAM_BOUNDS:
if param["type"] == "range":
key = f"x{numeric_index}" if param["name"] != "train_frac" else "fidelity1"
blinded_params[key] = scalers[param["name"]].transform(
[[params[param["name"]]]]
)[0][0]
numeric_index += 1 if param["name"] != "train_frac" else 0
elif param["type"] == "choice":
key = f"c{choice_index}"
choice_index = param["values"].index(params[param["name"]])
blinded_params[key] = f"{key}_{choice_index}"
choice_index += 1
return blinded_params
# Conversion from blinded to original representation
def convert_from_blinded(blinded_params):
original_params = {}
numeric_index = 1
choice_index = 1
for param in PARAM_BOUNDS:
if param["type"] == "range":
key = f"x{numeric_index}" if param["name"] != "train_frac" else "fidelity1"
original_params[param["name"]] = scalers[param["name"]].inverse_transform(
[[blinded_params[key]]]
)[0][0]
numeric_index += 1 if param["name"] != "train_frac" else 0
elif param["type"] == "choice":
key = f"c{choice_index}"
choice_value = blinded_params[key].split("_")[-1]
original_params[param["name"]] = param["values"][int(choice_value)]
choice_index += 1
return original_params
def evaluate(*args):
# Assume args are in the order of BLINDED_PARAM_BOUNDS
blinded_params = dict(zip([param["name"] for param in BLINDED_PARAM_BOUNDS], args))
original_params = convert_from_blinded(blinded_params)
BlindedParameterization(**blinded_params) # Validation
params_list = [original_params]
results = model.surrogate_evaluate(params_list)
results_list = [list(result.values()) for result in results]
return results_list
def get_interface(param_info, numeric_index, choice_index):
key = param_info["name"]
default_value = example_parameterization[key]
if param_info["type"] == "range":
# Rescale the parameter to be between 0 and 1
scaler = scalers[key]
scaler.fit([[bound] for bound in param_info["bounds"]])
scaled_value = scaler.transform([[default_value]])[0][0]
scaled_bounds = scaler.transform([[bound] for bound in param_info["bounds"]])
label = f"fidelity1" if key == "train_frac" else f"x{numeric_index}"
return (
gr.Slider( # Change this line
value=scaled_value,
minimum=scaled_bounds[0][0],
maximum=scaled_bounds[1][0],
label=label,
step=(scaled_bounds[1][0] - scaled_bounds[0][0]) / 100,
),
numeric_index + 1,
choice_index,
)
elif param_info["type"] == "choice":
return (
gr.Radio(
choices=[
f"c{choice_index}_{i}" for i in range(len(param_info["values"]))
],
label=f"c{choice_index}",
value=f"c{choice_index}_{param_info['values'].index(default_value)}",
),
numeric_index,
choice_index + 1,
)
# test the evaluate function
blinded_results = evaluate(*[0.5] * 20, "c1_0", "c2_0", "c3_0", 0.5)
numeric_index = 1
choice_index = 1
inputs = []
for param in PARAM_BOUNDS:
input, numeric_index, choice_index = get_interface(
param, numeric_index, choice_index
)
inputs.append(input)
iface = gr.Interface(
title="CrabNetSurrogateModel",
fn=evaluate,
inputs=inputs,
outputs=gr.Numpy(
value=np.array([list(example_result.values())]),
headers=[f"y{i+1}" for i in range(len(example_result))],
col_count=(len(example_result), "fixed"),
datatype=["number"] * len(example_result),
),
description="""
## Objectives
**Minimize `y1`, `y2`, `y3`, and `y4`**
### Correlations
- `y1` and `y2` are correlated
- `y1` is anticorrelated with `y3`
- `y2` is anticorrelated with `y3`
### Noise
`y1`, `y2`, and `y3` are stochastic with heteroskedastic, parameter-free
noise, whereas `y4` is deterministic, but still considered 'black-box'. In
other words, repeat calls with the same input arguments will result in
different values for `y1`, `y2`, and `y3`, but the same value for `y4`.
### Objective thresholds
If `y1` is greater than 0.2, the result is considered "bad" no matter how
good the other values are. If `y2` is greater than 0.7, the result is
considered "bad" no matter how good the other values are. If `y3` is greater
than 1800, the result is considered "bad" no matter how good the other
values are. If `y4` is greater than 40e6, the result is considered "bad" no
matter how good the other values are.
## Search Space
### Fidelity
`fidelity1` is a fidelity parameter. The lowest fidelity is 0, and the
highest fidelity is 1. The higher the fidelity, the more expensive the
evaluation, and the higher the quality.
NOTE: `fidelity1` and `y3` are correlated.
### Constraints
- x19 < x20
- x6 + x15 ≤ 1.0
### Parameter bounds
- 0 ≤ xi ≤ 1 for i ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20}
- c1 ∈ {c1_0, c1_1}
- c2 ∈ {c2_0, c2_1}
- c3 ∈ {c3_0, c3_1, c3_2}
- 0 ≤ fidelity1 ≤ 1
## Notion of best
Thresholded Pareto front hypervolume vs. running cost for three different
budgets, and averaged over 10 search campaigns.
References:
(1) Baird, S. G.; Liu, M.; Sparks, T. D. High-Dimensional Bayesian
Optimization of 23 Hyperparameters over 100 Iterations for an
Attention-Based Network to Predict Materials Property: A Case Study on
CrabNet Using Ax Platform and SAASBO. Computational Materials Science
2022, 211, 111505. https://doi.org/10.1016/j.commatsci.2022.111505.
(2) Baird, S. G.; Parikh, J. N.; Sparks, T. D. Materials Science
Optimization Benchmark Dataset for High-Dimensional, Multi-Objective,
Multi-Fidelity Optimization of CrabNet Hyperparameters. ChemRxiv March
7, 2023. https://doi.org/10.26434/chemrxiv-2023-9s6r7.
""",
)
iface.launch()