import gradio as gr from surrogate import CrabNetSurrogateModel model = CrabNetSurrogateModel() example_parameterization = parameterization = { "N": 3, "alpha": 0.5, "d_model": 512, "dim_feedforward": 2048, "dropout": 0.1, "emb_scaler": 1.0, "epochs_step": 10, "eps": 0.000001, "fudge": 0.02, "heads": 4, "k": 6, "lr": 0.001, "pe_resolution": 5000, "ple_resolution": 5000, "pos_scaler": 1.0, "weight_decay": 0, "batch_size": 32, "out_hidden4": 128, "betas2": 0.9, "betas1": 0.999, "losscurve": False, "learningcurve": False, "bias": False, "criterion": "RobustL1", "elem_prop": "mat2vec", "train_frac": 0.5, } model.surrogate_evaluate(example_parameterization) def greet(name): return "Hello " + name + "!!" iface = gr.Interface(fn=greet, inputs="text", outputs="text") iface.launch()