from click import Parameter import numpy as np from joblib import load from typing import List import pandas as pd import random from pydantic import ( BaseModel, ValidationError, ValidationInfo, field_validator, model_validator, ) PARAM_BOUNDS = [ {"name": "N", "type": "range", "bounds": [1, 10]}, {"name": "alpha", "type": "range", "bounds": [0.0, 1.0]}, {"name": "d_model", "type": "range", "bounds": [100, 1024]}, {"name": "dim_feedforward", "type": "range", "bounds": [1024, 4096]}, {"name": "dropout", "type": "range", "bounds": [0.0, 1.0]}, {"name": "emb_scaler", "type": "range", "bounds": [0.0, 1.0]}, {"name": "epochs_step", "type": "range", "bounds": [5, 20]}, {"name": "eps", "type": "range", "bounds": [1e-7, 1e-4]}, {"name": "fudge", "type": "range", "bounds": [0.0, 0.1]}, {"name": "heads", "type": "range", "bounds": [1, 10]}, {"name": "k", "type": "range", "bounds": [2, 10]}, {"name": "lr", "type": "range", "bounds": [1e-4, 6e-3]}, {"name": "pe_resolution", "type": "range", "bounds": [2500, 10000]}, {"name": "ple_resolution", "type": "range", "bounds": [2500, 10000]}, {"name": "pos_scaler", "type": "range", "bounds": [0.0, 1.0]}, {"name": "weight_decay", "type": "range", "bounds": [0.0, 1.0]}, {"name": "batch_size", "type": "range", "bounds": [32, 256]}, {"name": "out_hidden4", "type": "range", "bounds": [32, 512]}, {"name": "betas1", "type": "range", "bounds": [0.5, 0.9999]}, {"name": "betas2", "type": "range", "bounds": [0.5, 0.9999]}, {"name": "bias", "type": "choice", "values": [False, True]}, {"name": "criterion", "type": "choice", "values": ["RobustL1", "RobustL2"]}, {"name": "elem_prop", "type": "choice", "values": ["mat2vec", "magpie", "onehot"]}, {"name": "train_frac", "type": "range", "bounds": [0.01, 1.0]}, ] class Parameterization(BaseModel): N: int alpha: float d_model: int dim_feedforward: int dropout: float emb_scaler: float epochs_step: int eps: float fudge: float heads: int k: int lr: float pe_resolution: int ple_resolution: int pos_scaler: float weight_decay: int batch_size: int out_hidden4: int betas1: float betas2: float bias: bool criterion: str elem_prop: str train_frac: float @field_validator("*") def check_bounds(cls, v: int, info: ValidationInfo) -> int: param = next( (item for item in PARAM_BOUNDS if item["name"] == info.field_name), None, ) if param is None: return v if param["type"] == "range": min_val, max_val = param["bounds"] if not min_val <= v <= max_val: raise ValueError( f"{info.field_name} must be between {min_val} and {max_val}" ) elif param["type"] == "choice": if v not in param["values"]: raise ValueError(f"{info.field_name} must be one of {param['values']}") return v @model_validator(mode="after") def check_constraints(self) -> "Parameterization": if self.betas1 > self.betas2: raise ValueError( f"Received betas1={self.betas1} which should be less than betas2={self.betas2}" ) if self.emb_scaler + self.pos_scaler > 1.0: raise ValueError( f"Received emb_scaler={self.emb_scaler} and pos_scaler={self.pos_scaler} which should sum to less than or equal to 1.0" # noqa: E501 ) class CrabNetSurrogateModel(object): def __init__(self, fpath="models/surrogate_models_hgbr_opt.pkl"): self.models = load(fpath) def prepare_params_for_eval(self, raw_params: dict): raw_params["bias"] = int(raw_params["bias"]) raw_params["use_RobustL1"] = raw_params["criterion"] == "RobustL1" del raw_params["criterion"] # REVIEW: HistGradientBoostingRegressor handles categoricals natively now # https://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_categorical.html#sphx-glr-auto-examples-ensemble-plot-gradient-boosting-categorical-py # noqa: E501 elem_prop = raw_params["elem_prop"] raw_params["elem_prop_magpie"] = 0 raw_params["elem_prop_mat2vec"] = 0 raw_params["elem_prop_onehot"] = 0 raw_params[f"elem_prop_{elem_prop}"] = 1 del raw_params["elem_prop"] return raw_params def surrogate_evaluate( self, params_list: List[dict], seed=None, remove_noise=False ): assert isinstance(params_list, list), "Input must be a list of dictionaries" # Validate the parameters (i.e., will throw error if invalid) [Parameterization(**params) for params in params_list] parameters = pd.DataFrame(params_list) parameters = parameters.apply(self.prepare_params_for_eval, axis=1) if remove_noise: mae_percentiles = [0.5] * len(parameters) rmse_percentiles = [0.5] * len(parameters) runtime_percentiles = [0.5] * len(parameters) else: # Random number generator, without seed (intentional) rng = np.random.default_rng(seed) # Generate random percentiles for each set of parameters for # heteroskedastic, parameter-free noise mae_percentiles = rng.uniform(0, 1, size=len(parameters)) rmse_percentiles = mae_percentiles # typically correlated with MAE # typically anticorrelated with MAE/RMSE runtime_percentiles = 1 - mae_percentiles # Make predictions for each model mae_model = self.models["mae"] rmse_model = self.models["rmse"] runtime_model = self.models["runtime"] model_size_model = self.models["model_size"] # NOTE: The model expects the variables in the same order as when it was fit mae = self.models["mae"].predict( parameters.assign(mae_rank=mae_percentiles)[mae_model.feature_names_in_] ) rmse = self.models["rmse"].predict( parameters.assign(rmse_rank=rmse_percentiles)[rmse_model.feature_names_in_] ) runtime = self.models["runtime"].predict( parameters.assign(runtime_rank=runtime_percentiles)[ runtime_model.feature_names_in_ ] ) # Model size is deterministic (hence no rank variable) model_size = self.models["model_size"].predict( parameters[model_size_model.feature_names_in_] ) # Combine predictions into a list of dictionaries results = [ {"mae": m, "rmse": r, "runtime": rt, "model_size": ms} for m, r, rt, ms in zip(mae, rmse, runtime, model_size) ] return results # %% Code Graveyard # runtime_percentiles = np.random.uniform( # 0, 1, size=len(parameters) # )