import os import time import streamlit as st from langchain_community.vectorstores import FAISS from langchain_community.embeddings import HuggingFaceEmbeddings from langchain.prompts import PromptTemplate from langchain.memory import ConversationBufferWindowMemory from langchain.chains import ConversationalRetrievalChain from langchain_together import Together from footer import footer # Ensure this module is present in the working directory # Set Streamlit configuration st.set_page_config(page_title="AI Legal App", layout="centered") # Display a logo or banner (replace with a local image or URL) col1, col2, col3 = st.columns([1, 30, 1]) with col2: st.image("https://github.com/Nike-one/BharatLAW/blob/master/images/banner.png?raw=true", use_column_width=True) def hide_hamburger_menu(): st.markdown(""" """, unsafe_allow_html=True) hide_hamburger_menu() # Initialize session state if "messages" not in st.session_state: st.session_state.messages = [] if "memory" not in st.session_state: st.session_state.memory = ConversationBufferWindowMemory(k=2, memory_key="chat_history", return_messages=True) @st.cache_resource def load_embeddings(): """Load and cache the embeddings model.""" return HuggingFaceEmbeddings(model_name="law-ai/InLegalBERT") embeddings = load_embeddings() db = FAISS.load_local("ipc_embed_db", embeddings, allow_dangerous_deserialization=True) db_retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 3}) prompt_template = """ [INST] As a legal chatbot specializing in Indian law, your responses must be concise and accurate: - Provide bullet points summarizing key legal aspects. - Avoid assumptions or overly specific advice unless requested. - Clarify any common misconceptions. - Keep responses aligned with general legal principles. CONTEXT: {context} CHAT HISTORY: {chat_history} QUESTION: {question} ANSWER: [INST] """ prompt = PromptTemplate(template=prompt_template, input_variables=['context', 'question', 'chat_history']) api_key = os.getenv('TOGETHER_API_KEY') llm = Together(model="mistralai/Mixtral-8x22B-Instruct-v0.1", temperature=0.5, max_tokens=1024, together_api_key=api_key) qa = ConversationalRetrievalChain.from_llm(llm=llm, memory=st.session_state.memory, retriever=db_retriever, combine_docs_chain_kwargs={'prompt': prompt}) def extract_answer(full_response): """Extracts the assistant's answer from the response.""" return full_response.strip() def reset_conversation(): st.session_state.messages = [] st.session_state.memory.clear() for message in st.session_state.messages: with st.chat_message(message["role"]): st.write(message["content"]) input_prompt = st.chat_input("Ask your legal query...") if input_prompt: with st.chat_message("user"): st.markdown(f"**You:** {input_prompt}") st.session_state.messages.append({"role": "user", "content": input_prompt}) with st.chat_message("assistant"): with st.spinner("Analyzing..."): result = qa.invoke(input=input_prompt) message_placeholder = st.empty() answer = extract_answer(result["answer"]) # Simulated typing effect response = "" for char in answer: response += char time.sleep(0.02) message_placeholder.markdown(response + " |", unsafe_allow_html=True) st.session_state.messages.append({"role": "assistant", "content": answer}) if st.button('🗑️ Reset Chat', on_click=reset_conversation): st.experimental_rerun() footer()