import streamlit as st from transformers import AutoTokenizer, AutoModelForCausalLM @st.cache_resource def load_model(): model_dir = "./" # Ensure all files, including `vocab.txt`, are in this directory tokenizer = AutoTokenizer.from_pretrained(model_dir) model = AutoModelForCausalLM.from_pretrained(model_dir) return tokenizer, model st.set_page_config(page_title="Legal AI Chatbot", layout="centered") st.title("Legal AI Chatbot") st.write("Interact with a legal AI chatbot powered by transformers.") # Load tokenizer and model tokenizer, model = load_model() # User input for chatbot user_input = st.text_input("Enter your legal query:") if user_input: inputs = tokenizer(user_input, return_tensors="pt") outputs = model.generate(inputs["input_ids"], max_length=150) response = tokenizer.decode(outputs[0], skip_special_tokens=True) st.text_area("Response:", response, height=200)