import gradio as gr import numpy as np import cv2 import tensorflow as tf import torch from PIL import Image # ============== HF Transformers / ViT Model ============== from transformers import ViTImageProcessor, ViTForImageClassification # ----------- 1. Load the ViT model & processor ------------ vit_processor = ViTImageProcessor.from_pretrained('wambugu1738/crop_leaf_diseases_vit') vit_model = ViTForImageClassification.from_pretrained( 'wambugu1738/crop_leaf_diseases_vit', ignore_mismatched_sizes=True ) vit_label_treatment = { "Corn___Common_rust": "Use recommended fungicides and ensure crop rotation.", "Corn___Cercospora_leaf_spot": "Apply foliar fungicides; ensure good field sanitation.", "Potato___Early_blight": "Apply preventive fungicides; remove infected debris.", "Potato___Late_blight": "Use certified seed tubers; fungicide sprays when conditions favor disease.", "Rice___Leaf_blight": "Use resistant rice varieties, maintain field hygiene.", "Wheat___Leaf_rust": "Plant resistant wheat varieties, apply foliar fungicides if severe.", # Fallback "Unknown": "No specific treatment available." } def classify_image_vit(image): if not isinstance(image, Image.Image): image = Image.fromarray(image.astype('uint8'), 'RGB') inputs = vit_processor(images=image, return_tensors="pt") outputs = vit_model(**inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() # Predicted label predicted_label = vit_model.config.id2label.get(predicted_class_idx, "Unknown") treatment_text = vit_label_treatment.get(predicted_label, "No specific treatment available.") return predicted_label, treatment_text # ============== TensorFlow Model (plant_model_v5-beta.h5) ============== # Load the model keras_model = tf.keras.models.load_model('plant_model_v5-beta.h5') # Define the class names class_names = { 0: 'Apple___Apple_scab', 1: 'Apple___Black_rot', 2: 'Apple___Cedar_apple_rust', 3: 'Apple___healthy', 4: 'Not a plant', 5: 'Blueberry___healthy', 6: 'Cherry___Powdery_mildew', 7: 'Cherry___healthy', 8: 'Corn___Cercospora_leaf_spot Gray_leaf_spot', 9: 'Corn___Common_rust', 10: 'Corn___Northern_Leaf_Blight', 11: 'Corn___healthy', 12: 'Grape___Black_rot', 13: 'Grape___Esca_(Black_Measles)', 14: 'Grape___Leaf_blight_(Isariopsis_Leaf_Spot)', 15: 'Grape___healthy', 16: 'Orange___Haunglongbing_(Citrus_greening)', 17: 'Peach___Bacterial_spot', 18: 'Peach___healthy', 19: 'Pepper,_bell___Bacterial_spot', 20: 'Pepper,_bell___healthy', 21: 'Potato___Early_blight', 22: 'Potato___Late_blight', 23: 'Potato___healthy', 24: 'Raspberry___healthy', 25: 'Soybean___healthy', 26: 'Squash___Powdery_mildew', 27: 'Strawberry___Leaf_scorch', 28: 'Strawberry___healthy', 29: 'Tomato___Bacterial_spot', 30: 'Tomato___Early_blight', 31: 'Tomato___Late_blight', 32: 'Tomato___Leaf_Mold', 33: 'Tomato___Septoria_leaf_spot', 34: 'Tomato___Spider_mites Two-spotted_spider_mite', 35: 'Tomato___Target_Spot', 36: 'Tomato___Tomato_Yellow_Leaf_Curl_Virus', 37: 'Tomato___Tomato_mosaic_virus', 38: 'Tomato___healthy' } # Example dictionary of "treatments" for some classes keras_treatments = { 'Apple___Apple_scab': "Remove fallen leaves and prune infected branches. Apply fungicides containing captan or myclobutanil.", 'Apple___Black_rot': "Prune out dead branches. Spray copper-based fungicide during early fruit development.", 'Apple___Cedar_apple_rust': "Remove nearby juniper trees. Apply fungicides before bud break.", 'Apple___healthy': "No action required. The plant is healthy.", 'Blueberry___healthy': "No action required. The plant is healthy.", 'Cherry___Powdery_mildew': "Apply sulfur-based fungicide. Ensure good air circulation around the plant.", 'Cherry___healthy': "No action required. The plant is healthy.", 'Corn___Cercospora_leaf_spot Gray_leaf_spot': "Rotate crops to avoid build-up of pathogens. Use resistant hybrids and apply foliar fungicides.", 'Corn___Common_rust': "Plant rust-resistant hybrids. Apply fungicides at the first sign of rust.", 'Corn___Northern_Leaf_Blight': "Use resistant varieties and apply fungicides when lesions are observed.", 'Corn___healthy': "No action required. The plant is healthy.", 'Grape___Black_rot': "Remove and destroy infected leaves and fruits. Apply fungicides containing myclobutanil or captan.", 'Grape___Esca_(Black_Measles)': "Prune and destroy infected wood. Apply fungicides during the growing season.", 'Grape___Leaf_blight_(Isariopsis_Leaf_Spot)': "Maintain good air circulation. Spray protective fungicides like mancozeb.", 'Grape___healthy': "No action required. The plant is healthy.", 'Orange___Haunglongbing_(Citrus_greening)': "Remove and destroy infected trees. Control psyllid vectors with insecticides.", 'Peach___Bacterial_spot': "Apply copper-based bactericides. Use resistant varieties and avoid overhead irrigation.", 'Peach___healthy': "No action required. The plant is healthy.", 'Pepper,_bell___Bacterial_spot': "Apply copper-based sprays. Use certified seeds and avoid overhead irrigation.", 'Pepper,_bell___healthy': "No action required. The plant is healthy.", 'Potato___Early_blight': "Use certified seeds and apply preventative fungicides like chlorothalonil.", 'Potato___Late_blight': "Plant disease-free tubers and use fungicides containing metalaxyl.", 'Potato___healthy': "No action required. The plant is healthy.", 'Raspberry___healthy': "No action required. The plant is healthy.", 'Soybean___healthy': "No action required. The plant is healthy.", 'Squash___Powdery_mildew': "Use sulfur-based fungicides and ensure good ventilation.", 'Strawberry___Leaf_scorch': "Remove infected leaves. Apply fungicides containing myclobutanil.", 'Strawberry___healthy': "No action required. The plant is healthy.", 'Tomato___Bacterial_spot': "Apply copper-based sprays. Avoid overhead watering.", 'Tomato___Early_blight': "Prune infected leaves and apply fungicides containing chlorothalonil or mancozeb.", 'Tomato___Late_blight': "Remove infected plants. Apply fungicides containing chlorothalonil or metalaxyl.", 'Tomato___Leaf_Mold': "Ensure good ventilation and apply fungicides like mancozeb.", 'Tomato___Septoria_leaf_spot': "Remove infected leaves and apply fungicides containing chlorothalonil.", 'Tomato___Spider_mites Two-spotted_spider_mite': "Spray insecticidal soap or neem oil. Maintain humidity levels.", 'Tomato___Target_Spot': "Use resistant varieties. Apply fungicides containing chlorothalonil.", 'Tomato___Tomato_Yellow_Leaf_Curl_Virus': "Remove infected plants. Use resistant varieties and control whitefly vectors.", 'Tomato___Tomato_mosaic_virus': "Remove infected plants and disinfect tools. Use resistant seed varieties.", 'Tomato___healthy': "No action required. The plant is healthy.", 'Unknown': "No specific treatment available." } def edge_and_cut(img, threshold1, threshold2): emb_img = img.copy() edges = cv2.Canny(img, threshold1, threshold2) edge_coors = [] for i in range(edges.shape[0]): for j in range(edges.shape[1]): if edges[i][j] != 0: edge_coors.append((i, j)) if len(edge_coors) == 0: return emb_img row_min = edge_coors[np.argsort([coor[0] for coor in edge_coors])[0]][0] row_max = edge_coors[np.argsort([coor[0] for coor in edge_coors])[-1]][0] col_min = edge_coors[np.argsort([coor[1] for coor in edge_coors])[0]][1] col_max = edge_coors[np.argsort([coor[1] for coor in edge_coors])[-1]][1] new_img = img[row_min:row_max, col_min:col_max] # Simple bounding box in white emb_color = np.array([255], dtype=np.uint8) emb_img[row_min-10:row_min+10, col_min:col_max] = emb_color emb_img[row_max-10:row_max+10, col_min:col_max] = emb_color emb_img[row_min:row_max, col_min-10:col_min+10] = emb_color emb_img[row_min:row_max, col_max-10:col_max+10] = emb_color return emb_img def classify_and_visualize_keras(image): # Preprocess the image img_array = tf.image.resize(image, [256, 256]) img_array = tf.expand_dims(img_array, 0) / 255.0 # Make a prediction prediction = keras_model.predict(img_array) predicted_class_idx = tf.argmax(prediction[0], axis=-1).numpy() confidence = np.max(prediction[0]) # Obtain the predicted label predicted_label = class_names.get(predicted_class_idx, "Unknown") if confidence < 0.60: class_name = "Uncertain / Not in dataset" bounded_image = image treatment_text = "No treatment recommendation (uncertain prediction)." else: class_name = predicted_label bounded_image = edge_and_cut(image, 200, 400) treatment_text = keras_treatments.get(predicted_label, "No specific treatment available.") return class_name, float(confidence), bounded_image, treatment_text # ============== Combined Gradio App ============== def main_model_selector(model_choice, image): """ Dispatch function based on user choice of model: - 'Vit-model (Corn/Potato/Rice/Wheat)' -> use classify_image_vit - 'Keras-model (Apple/Blueberry/Cherry/etc.)' -> use classify_and_visualize_keras """ if image is None: return "No image provided.", None, None, None if model_choice == "ViT (Corn, Potato, Rice, Wheat)": # Return: label, treatment predicted_label, treatment_text = classify_image_vit(image) # For consistency with the Keras model outputs, # we'll keep placeholders for confidence & bounding box return predicted_label, None, image, treatment_text elif model_choice == "Keras (Apple, Blueberry, Cherry, etc.)": # Return: class_name, confidence, bounded_image, treatment_text class_name, confidence, bounded_image, treatment_text = classify_and_visualize_keras(image) return class_name, confidence, bounded_image, treatment_text else: return "Invalid model choice.", None, None, None # Create Gradio interface with gr.Blocks() as demo: gr.Markdown("# **Plant Disease Detection**") gr.Markdown( "Select which model you want to use, then upload an image to see the prediction, " "confidence (if applicable), bounding box (if applicable), and a suggested treatment." ) with gr.Row(): model_choice = gr.Radio( choices=["ViT (Corn, Potato, Rice, Wheat)", "Keras (Apple, Blueberry, Cherry, etc.)"], value="Keras (Apple, Blueberry, Cherry, etc.)", label="Select Model" ) with gr.Row(): inp_image = gr.Image(type="numpy", label="Upload Leaf Image") # Outputs with gr.Row(): out_label = gr.Textbox(label="Predicted Class") out_confidence = gr.Textbox(label="Confidence (If Available)") out_bounded_image = gr.Image(label="Visualization (If Available)") out_treatment = gr.Textbox(label="Treatment Recommendation") # Button btn = gr.Button("Classify") # Function binding btn.click( fn=main_model_selector, inputs=[model_choice, inp_image], outputs=[out_label, out_confidence, out_bounded_image, out_treatment] ) # Provide some example images gr.Examples( examples=[ ["Keras (Apple, Blueberry, Cherry, etc.)", "corn.jpg"], ["Keras (Apple, Blueberry, Cherry, etc.)", "grot.jpg"], ["Keras (Apple, Blueberry, Cherry, etc.)", "Potato___Early_blight.jpg"], ["Keras (Apple, Blueberry, Cherry, etc.)", "Tomato___Target_Spot.jpg"], ["ViT (Corn, Potato, Rice, Wheat)", "corn.jpg"], ], inputs=[model_choice, inp_image] ) demo.launch(share=True)