# import gradio as gr # gr.Interface.load("models/Abijith/Text-summarizer-t5-small").launch() import os import gradio as gr from transformers import AutoTokenizer, T5ForConditionalGeneration # Load model directly tokenizer = AutoTokenizer.from_pretrained("Abijith/my_first_t5_billsum_model") model = T5ForConditionalGeneration.from_pretrained("Abijith/my_first_t5_billsum_model") def summarize_text(input_text): summar_input = 'summarize: '+input_text input_tokens = tokenizer(summar_input, return_tensors='pt').input_ids outputs = model.generate(input_tokens) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Interface for the Gradio app iface = gr.Interface( fn=summarize_text, inputs=gr.Textbox(lines=5, label="Input Text"), outputs=gr.Textbox(label="Summary"), title="Text Summarizer", description="Enter a paragraph, and the app will provide a summary.", ) # Launch the Gradio app iface.launch()